Skip to main content
Log in

An Empirical Correlation of Uniaxial Compressive Strength with P-wave Velocity and Point Load Strength Index on Marly Rocks Using Statistical Method

  • Technical note
  • Published:
Geotechnical and Geological Engineering Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Agustawijaya DS (2007) The uniaxial compressive strength of soft rock. Civ Eng Dimens 9(1):9–14

    Google Scholar 

  • Akram M, Bakar ZA (2007) Correlation between uniaxial compressive strength and point load index for salt-range rocks. Pak J Eng Appl Sci 1(1):1–8

    Google Scholar 

  • Al-Jassar SH, Hawkins AB (1979) Geotechnical properties of the carboniferous limestone of the Bristol area—the influence of petrography and chemistry. In: 4th ISRM conference, vol 1. Montreau, pp 3–14

  • Altindag R (2012) Correlation between P-wave velocity and some mechanical properties for sedimentary rocks. J South Afr Inst Min Metall 112:229–237

    Google Scholar 

  • American Society for Testing and Materials (ASTM) (2008) Standard test method for determination of the point load strength index of rock and application to rock strength classifications. ASTM International, West Conshohocken, PA, D5731-08

  • ASTM (1983) Test methods for ultra violet velocities determination. Am Soc Test Mater D2845

  • ASTM (1986) Standard test method of unconfined compressive strength of intact rock core specimens D2938

  • ASTM (2001) Standard practice for preparing rock core specimens and determining dimensional and shape tolerances. Am Soc Test Mater D4543

  • ASTM (2010) ASTM D7012-10, standard test method for compressive strength and elastic moduli of intact rock core specimens under varying states of stress and temperatures

  • Basu A, Aydin A (2006) Predicting uniaxial compressive strength by point load test: significance of cone penetration. Rock Mech Rock Eng 39(5):483–490. doi:10.1007/s00603-006-0082-y

    Article  Google Scholar 

  • Basu A, Kamran M (2010) Point load test on schistose rocks and its applicability in predicting uniaxial compressive strength. Int J Rock Mech Min Sci 47(5):823–828. doi:10.1016/j.ijrmms.2010.04.006

    Article  Google Scholar 

  • Baykasoğlu A, Güllü H, Çanakçı H, Özbakır L (2008) Predicting of compressive and tensile strength of limestone via genetic programming. Expert Syst Appl 35:111–112

    Article  Google Scholar 

  • Bieniawski ZT (1975) The point-load test in geotechnical practice. Eng Geol 9(1):1–11. doi:10.1016/0013-7952(75)90024-1

    Article  Google Scholar 

  • Broch E, Franklin JA (1972) The point-load strength test. Int J Rock Mech Min Sci Geomech Abstr 9(6):669–676. doi:10.1016/0148-9062(72)90030-7

    Article  Google Scholar 

  • Brook N (1985) The equivalent core diameter method of size and shape correction in point load testing. Int J Rock Mech Min Sci Geomech Abstr 22(2):61–70. doi:10.1016/0148-9062(85)92328-9

    Article  Google Scholar 

  • Bruno G, Vessia G, Bobbo L (2012) Statistical method for assessing the uniaxial compressive strength of carbonate rock by Schmidt hammer tests performed on core samples. Rock Mech Rock Eng. doi:10.1007/s00603-012-0230-5

    Google Scholar 

  • Cargill JS, Shakoor A (1990) Evaluation of empirical methods for measuring the uniaxial compressive strength. Int J Rock Mech Min Sci 27:495–503

    Article  Google Scholar 

  • Ceryan N, Okkan U, Kesimal A (2012) Prediction of unconfined compressive strength of carbonate rocks using artificial neural networks. Environ Earth Sci. doi:10.1007/s12665-012-1783-z

    Google Scholar 

  • Chau KT, Wong RHC (1996) Uniaxial compressive strength and point load strength of rocks. Int J Rock Mech Min Sci Geomech Abst 33(2):183–188. doi:10.1016/0148-9062(95)00056-9

    Article  Google Scholar 

  • Cobanglu I, Celik S (2008) Estimation of uniaxial compressive strength from point load strength, Schmidt hardness and P-wave velocity. Bull Eng Geol Environ 67:491–498

    Article  Google Scholar 

  • D’Andrea DV, Fischer RL, Fogelson DE (1965) Prediction of compressive strength from other rock properties. US B M Report of Investigations 6702

  • Das BM (1985) Evaluation of the point load strength for soft rock classification. In: Proceedings of the fourth international conference ground control in mining. Morgantown, WV, pp 220–226

  • Deere DU, Miller RP (1966) Engineering classification and index properties for intact rock. Air Force Weapons Lab. Technical Report, AFWL-TR 65–116, Kirtland Base, New Mexico

  • Dehghan S, Sattari GH, Chehre Chelgani S, Aliabadi MA (2010) Prediction of uniaxial compressive and modulus of elasticity for travertine sample using regression and artificial neural networks. Min Sci Technol 20:41–46

    Google Scholar 

  • Diamantis K, Gartzos E, Migiros G (2009) Study on uniaxial compressive strength, point load strength index, dynamic and physical properties of serpentinites from Central Greece: test results and empirical relations. Eng Geol 108:199–207

    Article  Google Scholar 

  • Diamantis K, Bellas S, Migiros G, Gartzos E (2011) Correlating wave velocities with physical, mechanical properties and petrographic characteristics of peridotites from the central Greece. Geotech Geol Eng 29(6):1049–1062

    Article  Google Scholar 

  • Entwisle DC, Hobbs PRN, Jones LD, Gunn D, Raines MG (2005) The relationship between effective porosity, uniaxial compressive strength and sonic velocity of intact Borrowdale Volcanic Group core samples from Sellafield. Geotech Geol Eng 23:793–809

    Article  Google Scholar 

  • Fener M, Kahraman S, Bilgil A, Gunaydin O (2005) A comparative evaluation of indirect methods to estimate the compressive strength of rocks. Rock Mech Rock Eng 38(4):329–343. doi:10.1007/s00603-005-0061-8

    Article  Google Scholar 

  • Forster IR (1983) The influence of core sample geometry on the axial point-load test. Int J Rock Mech Min Sci Geomech Abstr 20:291–295

    Article  Google Scholar 

  • Freyburg E (1972) Der untere trod mittlere Buntsandstein SW-Thiiringens in seinen gesteinstechnischen Eigenschatten. Ber Dte Ges Geol Wiss A 17:911–919

    Google Scholar 

  • Ghosh DK, Srivastava M (1991) Point-load strength: an index for classification of rock material. Bull Int Assoc Eng Geol 44:27–33

    Article  Google Scholar 

  • Gokceoglu C, Zorlu K (2004) A fuzzy model to predict the unconfined compressive strength and modulus of elasticity of a problematic rock. Eng Appl Artif Intell 17:61–72

    Article  Google Scholar 

  • Goktan RM (1988) Theoretical and practical analysis of rock rippability, Ph.D. Thesis. Istanbul Technical University

  • Golubev A, Rabinovich GJ (1976) Resultaty primenenia apparatury akusticeskogo karotasa dlja predelenia procnostych svoistv gornych porod na mestorosdeniach tverdych iskopaemych. Prikladnaja Geofizika Moskva 73:109–116

    Google Scholar 

  • Grasso P, Xu S, Mahtab A (1992) Problems and promises of index testing of rocks. Rock Mechanics, Balkema, Rotterdam, pp 879–888

    Google Scholar 

  • Gunsallus KL, Kulhawy FH (1984) A comparative evaluation of rock strength measures. Int J Rock Mech Min Sci Geomech Abstr 21:233–248

    Article  Google Scholar 

  • Hardy JS (1997) The point load test for weak rock in dredging applications. Int J Rock Mech Min Sci 34(3–4):295.e1–295.e13. doi:10.1016/s1365-1609(97)00063-4

    Google Scholar 

  • Hassani FP, Scoble MJ, Whittaker BN (1980) Application of point load index test to strength determination of rock and proposals for new size-correction chart. In: Summers DA (ed) Proceedings of the 21st US symposium on rock mechanics. University of Missouri Press, Rolla, pp 543–564

  • Hawkins AB (1998) Aspects of rock strength. Bull Eng Geol Environ 57:17–30

    Article  Google Scholar 

  • Hawkins AB, Olver JAG (1986) Point load tests: correlation factor and contractual use. An example from the Corallian at Weymouth. In: Hawkins AB (ed) Site investigation practice: assessing BS 5930. Geological Society, London, pp 269–271

  • Heidari M, Khanlari G, Torabi-Kaveh M, Kargarian S (2012) Predicting the uniaxial compressive and tensile strengths of gypsum rock by point load testing. Rock Mech Rock Eng 45(2):265–273. doi:10.1007/s00603-011-0196-8

    Article  Google Scholar 

  • Hoek E, Brown ET (1980) Underground excavations in rock. Inst Min Metal, London

    Google Scholar 

  • International Society for Rock Mechanics (ISRM) (1985) Suggested method for determining point load strength: ISRM Common testing methods. Int J Rock Mech Min Sci Geomech Abstr 22(4):112. doi:10.1016/0148-9062(85)92985-7

    Google Scholar 

  • ISRM (2007) The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. In: Ulusay, Hudson (eds) Suggested methods prepared by the commission on testing methods. International Society for Rock Mechanics. ISRM Turkish National Group, Ankara, Turkey, p 628

  • Kahraman S (2001) Evaluation of simple methods for assessing the uniaxial compressive strength of rock. Int J Rock Mech Min Sci 38:981–994

    Article  Google Scholar 

  • Kahraman S, Gunaydin O (2009) The effect of rock classes on the relation between uniaxial compressive strength and point load index. Bull Eng Geol Environ 68(3):345–353. doi:10.1007/s10064-009-0195-0

    Article  Google Scholar 

  • Kahraman S, Gunaydin O, Fener M (2005) The effect of porosity on the relation between uniaxial compressive strength and point load index. Int J Rock Mech Min Sci 42(4):584–589. doi:10.1016/j.ijrmms.2005.02.004

    Article  Google Scholar 

  • Karakus M, Tutmez B (2008) Fuzzy and multiple regression modelling for evaluation of intact rock strength based on point load, schmidt Hammer and sonic velocity. Rock Mech Rock Eng 39(1):45–57. doi:10.1007/s00603-005-0050-y

    Article  Google Scholar 

  • Khandelwal M (2013) Correlating P-wave velocity with the physico-mechanical properties of different rocks. Pure Appl Geophys. doi:10.1007/s00024-012-0556-7

    Google Scholar 

  • Khandelwal M, Ranjith PG (2010) Correlating index properties of rocks with P-wave measurements. J Appl Geophys 71:1–5

    Article  Google Scholar 

  • Khandelwal M, Singh TN (2009) Correlating static properties of coal measures rocks with p-wave velocity. Int J Coal Geol 79:55–60

    Article  Google Scholar 

  • Kılıç A, Teymen A (2008) Determination of mechanical properties of rocks using simple methods. Bull Eng Geol Environ 67(2):237–244. doi:10.1007/s10064-008-0128-3

    Article  Google Scholar 

  • Kohno M, Maeda H (2012) Relationship between point load strength index and uniaxial compressive strength of hydrothermally altered soft rocks. Int J Rock Mech Min Sci 50:147–157

    Article  Google Scholar 

  • Kurtulus G, Irmak T, Sertcelik I (2011) Physical and mechanical properties of Gokcseda: Imbros (NE Aegean Sea) Island and esites. Bull Eng Geol Environ 69:321–324

    Article  Google Scholar 

  • Lashkaripour GR (2002) Predicting mechanical properties of mudroek from index parameters. Bull Eng Geol Environ 61:73–77

    Article  Google Scholar 

  • Li D, Wong LNY (2012) Point load test on meta-sedimentary rocks and correlation to UCS and BTS. Rock Mech Rock Eng. doi:10.1007/s00603-012-0299-x

    Google Scholar 

  • Martínez-Martínez J, Benavente D, García-del-Cura MA (2012) Comparison of the static and dynamic elastic modulus in carbonate rocks. Bull Eng Geol Environ 71:263–268

    Article  Google Scholar 

  • Mccann DM, Culshaw MG, Northmore KJ (1990) Rock mass assessment from seismic measurements. In: Culshaw B, Coffey C (eds) Fields testing in engineering geology. Geol Soc Eng Pub No 6, pp 257–266

  • McNally GH (1987) Estimation of coal measures rock strength using sonic and neutron logs. Geoexploration 24:381–395

    Article  Google Scholar 

  • Militzer H, Stoll R (1973) Einige Beitraige der Geophysik zur primadatenerfassung im Bergbau. Neue Bergbautechnik 3:21–25

    Google Scholar 

  • Minaeian B, Ahangari K (2011) Estimation of uniaxial compressive strength based on P-wave and Schmidt hammer rebound using statistical method. Arab J Geosci. doi:10.1007/s12517-011-0460-y

  • Moomivand H (2011) Development of a new method for estimating the indirect uniaxial compressive strength of rock using Schmidt hammer. BHM 156(4):142–146. doi:10.1007/s00501-011-0644-5

    Google Scholar 

  • Moradian ZA, Behnia M (2009) Predicting the uniaxial compressive strength and static Young’s modulus of intact sedimentary rocks using the ultrasonic test. Int J Geomech 9:1–14

    Article  Google Scholar 

  • Norbury DR (1986) The point load test. In: Hawkins AB (eds) Site investigation practice: assessing BS 5930. Geological Society, London, pp 325–329

  • O’Rourke JE (1988) Rock index properties for geo engineering design in underground development. SME preprint 88–48, 5 p

  • Palchik V, Hatzor YH (2004) Influence of porosity on tensile and compressive strength of porous chalks. Rock Mech Rock Eng 37:331–341

    Article  Google Scholar 

  • Quane SL, Russel JK (2003) Rock strength as a metric of welding intensity in pyroclastic deposits. Eur J Mineral 15:855–864

    Article  Google Scholar 

  • Read JRL, Thornton PN, Regan WM (1980) A rational approach to the point load test. Proc. Aust-N.Z. Geomech Conf 2:35–39

    Google Scholar 

  • Rusnak JA, Mark C (1999) Using the point load test to determine the uniaxial compressive strength of coal measure rock. In: Proceedings of 19th international conference on ground control in mining, pp 362–371

  • Sarkar K, Vishal V, Singh TN (2012) An Empirical Correlation of Index Geomechanical Parameters with the Compressional Wave Velocity. Geotech Geol Eng. doi:10.1007/s10706-011-9481-2

    Google Scholar 

  • Sengun N, Altindag R, Demirdag S, Yavuz H (2011) P-wave velocity and Schmidt rebound hardness value of rocks under uniaxial compressional loading. Int J Rock Mech Min Sci 48:693–696

    Article  Google Scholar 

  • Sharma PK, Singh TN (2008) A correlation between P-wave velocity, impact strength index, slake durability index and uniaxial compressive strength. Bull Eng Geol Environ 67:17–22

    Article  Google Scholar 

  • Sharma PK, Singh TN (2010) Reply to discussion by N Arıoglu, G Kurt and E Arıoglu. doi:10.1007/s10064-0100261-7 on the paper entitled “A correlation between P-wave velocity, impact strength index, slake durability index and uniaxial compressive strength” by PK Sharma, TN Singh, Bull Eng Geol Environ

  • Sharma PK, Khandelwal M, Singh TN (2011) A correlation between Schmidt hammer rebound numbers with impact strength index, slake durability index and P-wave velocity. Int J Earth Sci (Geol Rundsch) 100:189–195

    Article  Google Scholar 

  • Singh DP (1981) Determination of some engineering properties of weak rocks. In: IAkai K (ed) Proceedings of the international symposium weak rock. Balkema, Rotterdam, pp 21–24

  • Singh VK, Singh DP (1993) Correlation between point load index and compressive strength for quartzite rocks. Geotech Geol Eng 11:269–272

    Article  Google Scholar 

  • Singh TN, Kainthola A, Venkatesh A (2012) A Correlation Between Point Load Index and Uniaxial Compressive Strength for Different Rock Types. Rock Mech Rock Eng 45:259–264. doi:10.1007/s00603-011-0192-z

    Article  Google Scholar 

  • Smith HJ (1997) The point load test for weak rock in dredging applications. Int J Rock Mech Min Sci 34:702

    Article  Google Scholar 

  • Sousa LMO, Del Rio LMS, Calleja L, de Argandona VGR, Rey AR (2005) Influence of microfraetures and porosity on the physieo-meehanieal properties and weathering of ornamental granites. Eng Geol 77:153–168

    Article  Google Scholar 

  • Thuro K, Plinninger RJ (2001) Scale effects in rock strength properties. Part 2: point load test and point load strength index. In: Särkkä P, Eloranta P (eds) Rock mechanics—a challenge for society—881 p. Proceedings of the ISRM regional symposium Eurock 2001, Espoo, Finland, 4–7 June 2001, Lisse (Balkema/Swets & Zeitlinger), pp 175–180

  • Tsiambaos G, Sabatakakis N (2004) Considerations on strength of intact sedimentary rocks. Eng Geol 72(3–4):261–273. doi:10.1016/j.enggeo.2003.10.001

    Article  Google Scholar 

  • Tsidzi KEN (1991) Point load-uniaxial compressive strength correlation. In: Wittke W, Balkema (eds) Proceedings of the 7th ISRM congress, vol 1. Rotterdam, pp 637–639

  • Turgrul A, Zarif IH (1999) Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Eng Geol 51:303–317

    Article  Google Scholar 

  • Ulusay R, Tureli K, IderM H (1994) Prediction of engineering properties of a selected litharenite sandstone from its petrographic characteristics using correlation and multivariate statistical techniques. Eng Geol 38:135–157

    Article  Google Scholar 

  • Vallejo LE, Welsh RA, Robinson MK (1989) Correlation between unconfined compressive and point load strength for Appalachian rocks. In: Khair AW, Balkema (eds) Proceedings of the 30th US symposium on rock mechanics. Rotterdam, pp 461–468

  • Yagiz S (2011) P-wave velocity test for assessment of geotechnical properties of some rock materials. Bull Mater Sci 34(4):947–953

    Article  Google Scholar 

  • Yasar E, Erdogan Y (2004a) Correlating sound velocity with the density, compressive strength and young’s modulus of carbonate rocks. Int J Rock Mech Min Sci 41:871–875

    Article  Google Scholar 

  • Yasar E, Erdogan Y (2004b) Estimation of rock physicomechanical properties using hardness methods. Eng Geol 71:281–288

    Article  Google Scholar 

  • Yilmaz I, Yuksek AG (2008) An example of artificial neural network application for indirect estimation of rock parameters. Int J Rock Mech Min Sci 5(41):781–795

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdolazim Azimian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azimian, A., Ajalloeian, R. & Fatehi, L. An Empirical Correlation of Uniaxial Compressive Strength with P-wave Velocity and Point Load Strength Index on Marly Rocks Using Statistical Method. Geotech Geol Eng 32, 205–214 (2014). https://doi.org/10.1007/s10706-013-9703-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10706-013-9703-x

Keywords

Navigation