Skip to main content
Log in

Determining kinetic parameters of a block coal bed gas by solving inverse problem based on data of borehole gas measurements

  • Geomechanics
  • Published:
Journal of Mining Science Aims and scope

Abstract

In the framework of the developed and implemented nonlinear geomechanical model of a coal bed having block structure, describing gas inflow, the authors propose the method for quantitative estimate of gas content as well as diffusion and mass exchange coefficients based on solution of inverse problems using pressure measurements taken in shut-in borehole in the “pressure drop” mode. Besides the main function, the set problem had an auxiliary objective function with the less number of arguments. Numerical experiments with synthetic input data yield that the auxiliary objective function has a number of local minimums. The authors also put forward a technique of finding global minimum that provides the set problem solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Malyshev, Yu.N., Trubetskoy, K.N., and Airuni, A.T., Fundamental’no-prikladnye metody resheniya problemy metana ugol’nykh plastov (Basic and Applied Methods to Solve Issues Connected with Coalbed Methane), Moscow: Akad. Gorn. Nauk, 2000.

    Google Scholar 

  2. Puchkov, L.A., Slastunov, S.V., and Kolikov, K.S., Izvlechenie metana iz ugol’nykh plastov (Coalbed Methane Recovery), Moscow: MGGU, 2002.

    Google Scholar 

  3. Seidle, J., Fundamentals of Coalbed Methane Reservoir Engineering, PennWell Books, 2011.

    Google Scholar 

  4. Oparin, V.N., Sashurin, A.D., Leont’ ev, A.V. et al., Destruktsiya zemnoi kory i protsessy samoorganizatsii v oblastyakh sil’nogo tekhnogennogo vozdeistviya (Destruction and Self-Organization of the Earth Crust in the Areas Exposed to Heavy Industrial Impact), Novosibirsk: SO RAN, 2012.

    Google Scholar 

  5. Sadovsky, M.A., Bolkhovitinov, L.G., and Pisarenko, V. F., Deformirovanie sredy i seismicheskii protsess (Deformation and Seismic Process in a Medium), Moscow: Nauka, 1987.

    Google Scholar 

  6. Kocharyan, G.G. and Spivak, A.A., Hierarchy of Structural and Dynamic Characteristics of the Earth Crust, Geoekologiya, 2002, no. 6.

    Google Scholar 

  7. Odintsev, V.N., Modeling of Methane Release from Intact Coal, J. Min. Sci., 2005, vol. 41, no. 5, pp. 407–415.

    Article  Google Scholar 

  8. Shi, Q. and Durucan, S., A Bidisperse Pore Diffusion Model for Methane Displacement Desorption in Coal by CO2 Injection, Fuel, 2003. vol. 82.

    Google Scholar 

  9. Connell, L.D., Coupled Flow and Geomechanical Processes during Gas Production from Coal Seams, Int. J. Coal Geology, 2009. vol. 79, issues 1 and 2.

    Article  Google Scholar 

  10. Brochard, L., Vandamme, M., and Pellenq, R.J.-M., Poromechanics of Microporous Medium, J. Mechanics and Physics of Solids, 2012. vol. 60.

    Google Scholar 

  11. Nazarov, L.A. and Nazarova, L.A., Some Geomechanical Aspects of Gas Recovery from Coal Seams, J. Min. Sci., 1999, vol. 35, no. 2, pp. 135–145.

    Article  Google Scholar 

  12. Prognoznyi katalog shakhtoplastov Kuznetskogo ugol’nogo basseina s kharakteristikoi gornogeologicheskikh i gornotekhnichsekikh faktorov za 1995i 2000gg. (Prognostic Catalog of Kuznetsk Coal Basin Coalbeds with Characteristic of Geological and Mining Factors for 1995 and 2000., Moscow: IGD Skochinskogo, 1991.

  13. Lunarzewski, L., Gas Emission Prediction and Recovery in Underground Coal Mines, Int. J. Coal Geology, 1998. vol. 35.

    Google Scholar 

  14. Kuznetsov, S.V. and Krigman, R.N., Prirodnaya pronitsaemost’ ugol’nykh plastov i metody ee opredeleniya (Natural Permeability of Coal Beds and the Determination Methods), Moscow: Nauka, 1978.

    Google Scholar 

  15. Khristianovich, S.A. and Kovalenko, Yu.F., Measurement of Gas Pressure in Coal Seam, J. Min. Sci., 1988, vol. 24, no. 3, pp. 181–1999.

    Google Scholar 

  16. Aminian, K. and Rodvelt, G., Evaluation of Coalbed Methane Reservoirs, Coal Bed Methane: From Prospect to Pipeline, Amsterdam, Boston: Elsevier, 2014.

    Google Scholar 

  17. Saghafi, A., Coal Reservoir Parameters Regulating Gas Emission into and from Coal Mines, Coal 2009. N. Aziz (Ed.), University of Wollongong & the Australian Institute of Mining and Metallurgy, 2009.

    Google Scholar 

  18. Tarantola, A., Inverse Problems: Theory and Methods for Model Parameter Estimation, SIAM, 2005.

    Google Scholar 

  19. Nazarov, L.A. and Nazarova, L.A. Determination of the Filtration Properties and Stresses in a Coal seam, by Solving the Inverse Problem, J. Min. Sci., 2000, vol. 36, no. 2, pp. 106–113.

    Article  Google Scholar 

  20. Nazarova, L.A., Nazarov, L.A., Karchevsky, A.L., and Vandamme, M., Diffusive properties and Storage capacity of Coalbed by Hole Pressure Measurement Data Based on Inverse Problem Solution, Sib. Zh. Industr. Matem., 2014, vol. 17, no. 1.

    Google Scholar 

  21. Nazarova, L.A., Nazarov, L.A., Polevshchikov, G.Ya., and Romin, R.I., Inverse Problem Solution for Estimating Gas Content and Gas Diffusion Coefficient of Coal, J. Min. Sci., 2012, vol. 48, no. 5, pp. 781–788.

    Article  Google Scholar 

  22. Nazarova, L.A., Nazarov, L.A., Rodin, R.I., and Vandamme, M., Estimation of Stresses and Properties of Coal–Rock Mass Based on Inverse Problem Solution, 13th ISRM Congress Proceedings, 2015.

    Google Scholar 

  23. Wittke, W., Rock Mechanics, Berlin, Heidelberg, New York: Springer–Verlag, 1990.

    Google Scholar 

  24. Vengerov, I.R., Teplofizika shakht i rudnikov. Matematicheskie modeli (Mine Thermophysics. Mathematical Models), vol. 1, Donetsk: NORD-Press, 2008.

    Google Scholar 

  25. Khristianovich, S.A., Fundamentals of Seepage Theory, J. Min. Sci., 1989, vol. 25, no. 5, pp. 397–412.

    Google Scholar 

  26. Praktikum po osvoeniyu tekhnologii GIS: ucheb. posob. stazherov ZAO PGO Tyumenpromgeofizika (Practical Course of GIS Technologies: Tyumenpromgeofizika Trainees’ Educational Aid), Megion, 2002.

  27. Harpalani, S.B. and Chen, G., Estimation of Change in Fracture Porosity of Coal with Gas Emission, Fuel, 1995. 74(10).

    Google Scholar 

  28. Seidle, J.R. and Huitt, L.G., Experimental Measurement of Coal Matrix Shrinkage due to Gas Desorption and Implications for Cleat Permeability Increases, Int. Meet. Petroleum Eng., Beijing, China, 1995.

    Google Scholar 

  29. Czerw, K., Zietek, J., and Wagner, M., Methane Sorption on Bituminous Coal—Experiments on Cuboid- Shaped Samples Cut from Primal Coal Lumps, Mineral Resources Management, 2010, vol. 26, no. 2.

    Google Scholar 

  30. Espinoza, D.N., Vandamme, M., Pereira, J.-M., et al., Measurement and Modeling of Adsorptive–Poromechanical Properties of Bituminous Coal Cores Exposed to CO2: Adsorption, Swelling Strains, Swelling Stresses and Impact on Fracture Permeability, Journal of Coal Geology, 2014. vols. 134–135.

    Google Scholar 

  31. Samarsky, A.A., Teoriya raznostnykh skhem (Theory of Difference Schemes), Moscow: Nauka, 1977.

    Google Scholar 

  32. Musin, K.M., Singatullina, R.R., Khusainov, V,M., et al., Estimate of Jointing Parameters of Tatarstan Rock Reservoirs Based on Data from Oriented Cores and Downhole Imagers, Neft. Khoz-vo, 2013, no. 7.

    Google Scholar 

  33. Nazarov, L.A., Nazarova, L.A., Karchevsky, A.L., and Panov, A.V., Stress and Strain Assessment of Rocks Based on Inverse Problem on Displacement Measurement at Free Boundaries, Sib. Zh. Industr. Matem., 2012, vol. 15, no. 4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Nazarova.

Additional information

Original Russian Text © L.A. Nazarova, L.A. Nazarov, A.L. Karchevsky, M. Vandamme, 2015, published in Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2015, No. 4, pp. 34–41.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarova, L.A., Nazarov, L.A., Karchevsky, A.L. et al. Determining kinetic parameters of a block coal bed gas by solving inverse problem based on data of borehole gas measurements. J Min Sci 51, 666–672 (2015). https://doi.org/10.1134/S1062739115040027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739115040027

Keywords

Navigation