Skip to main content
Log in

Nonlinear deformation–wave processes in various rank coal specimens loaded to failure under varied temperature

  • Geomechanics
  • Published:
Journal of Mining Science Aims and scope

Abstract

Aiming to build up a phenomenological basis for the theory of interaction between geomechanical, thermal and physicochemical processes in methane-bearing coal in Kuzbass, the authors performed a set of laboratory bench tests on uniaxial stiff loading of various rank coal specimens. The pressure versus temperature dependences are obtained for coal specimens with granite gaskets using high-precision scanning computerized thermal imager. It is shown that temperature changed in coal specimens subjected to loading to failure is connected with volatile content and internal energy relaxation of methane in Kuzbass coal. Using jointly thermal imaging and laser measuring equipment ALMEC-tv for high-precision and detail control of deformation–wave processes in loaded coal specimens by speckle-method, it has for the first time been proved that nonlinear pendulum-type movements of structural elements are possible in coal specimens with varied temperature field, which is of fundamental importance for actualization of previously ignored mass and gas exchange processes in high-stress coal beds of different grade composition under mining,

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avgushevich, I.A., Bronovets, T.M., Eremin, I.V., et al., Analiticheskaya khimiya i tekhnicheskii analiz uglya (Analytical Chemistry and Technical Analysis of Coal), Moscow: Nedra, 1987.

    Google Scholar 

  2. Alekseev, A.D., Airuni, A.T., Zverev, I.V. et al., Property of an Organic Matter in Coal to Form Meta-Stable Single-Phase Systems with Gas by the Type of Solid Solutions, Dipl. Nauch. Otkryt., 1994, no. 9.

    Google Scholar 

  3. Oparin, V.N., Sashurin, A.D., Leont’ev, A.V., et al., Destruktisya zemnoi kory i protsessy samoorganizatsii v oblastyakh sil’nogo tekhnogennogo vozdeisviya (Destruction and Self-Organization of the Earth Crust in the Areas under Heavy Production), Novosibirsk: SO RAN, 2012.

    Google Scholar 

  4. Adushkin, V.V. and Oparin, V.N., From the Alternating-Sign Explosion Response of Rocks to the Pendulum Waves in Stressed Geomedia, Part II, J. Min. Sci., 2014, vol. 50, no. 4, pp. 623–645.

    Article  Google Scholar 

  5. Dyrdin, V.V., Smirnov, V.G., and Shepeleva, S.A., Parameters of Methane Condition during Phase Transition at the Outburst-Hazardous Coal Seam Edges, J. Min. Sci., 2013, vol. 49, no. 6, pp. 908–912.

    Article  Google Scholar 

  6. Smirnov, V.G., Estimate of Potential Crack Formation in Coal under Outburst Hazard Conditions, GIAB, 2013, no. 5.

    Google Scholar 

  7. Smirnov, V.G., Manakov, A.Yu., and Dyrdin, V.V., Activation Energy of Origination and Decomposition of Methane Hydrides in Natural Coal Pores, Vestn. KuzGTU, 2014, no. 3.

    Google Scholar 

  8. Oparin, V.N., Usol’tseva, O.M., Semenov, V.N., and Tsoi, P.A., Evolution of Stress–Strain State in Structured Rock Specimens under Uniaxial Loading, J. Min. Sci., 2013, vol. 49, no. 5, pp. 677–690.

    Article  Google Scholar 

  9. Oparin, V.N., Kiryaeva, T.A., Gavrilov, V.Yu., Shutilov, R.A., Kovchavtsev, A.P., Tanaino, A.S., Efimov, V.P., Astrakhantsev, I.E., and Grenev, I.V., Interaction of Geomechanical and Physicochemical Processes in Kuzbass Coal, J. Min. Sci., 2014, vol. 50, no. 2, pp. 191–214.

    Article  Google Scholar 

  10. Oparin, V.N. and Kiryaeva, T.A., Genetic Causes of Fire and Outburst Hazard in Kuzbass Coal, GIAB, 2015, no. 3.

    Google Scholar 

  11. Adushkin, V.V. and Oparin, V.N., From the Alternating-Sign Explosion Response of Rocks to the Pendulum Waves in Stressed Geomedia, Part I, J. Min. Sci., 2012, vol. 48, no. 2, pp. 203–222.

    Article  Google Scholar 

  12. Adushkin, V.V. and Oparin, V.N., From the Alternating-Sign Explosion Response of Rocks to the Pendulum Waves in Stressed Geomedia, Part II, J. Min. Sci., 2013, vol. 49, no. 2, pp. 175–209.

    Article  Google Scholar 

  13. Oparin, V.N., Pendulum Waves and “Geomechanical” Temperature, Proc. 2nd Sino-Russian Joint Scientific-Technical Forum on Deep-Level Rock Mechanics and Engineering, Novosibirsk: IGD SO RAN, 2012.

    Google Scholar 

  14. Usol’tseva, O.M., Nazarova, L.A., Tsoi, P.A., Nazarov, L.A., and Semenov, V.N., Genesis and Evolution of Discontinuities in Geomaterials: Theory and a Laboratory Experiment, J. Min. Sci., 2013, vol. 49, no. 1, pp 1–7.

    Article  Google Scholar 

  15. Polevshchikov, G.Ya. and Kiryaeva, T.A., Gas–Dynamic Stability of Coal–Methane Substance, GIAB, Special Issue 7, Kuzbass 1, 2009.

    Google Scholar 

  16. Skritskii, V.A., Endogennye pozhary v ugol’nykh shakhtakh, priroda ikh vozniknoveniya, sposoby predotvrashcheniya i tusheniya (Spontaneous Fires in Coal Mines, Nature, Prevention and Extinguishing Methods), Kemerovo: Kuzbassvuzizdat, 2006.

    Google Scholar 

  17. Malinnikova, O.N., Outburst Hazard and Temperature Connection in Coal, Deformation and Failure of Materials with Defects and Dynamic Events in Rocks and in Mines: Proc. 16th Academician Khristianovich’s International School, Simferopol, 2006.

    Google Scholar 

  18. Kovchavtsev, A.P., Thermal Imager: It’s Better to See It Once, Nauka iz Perv. Ruk, 2012, no. 5.

    Google Scholar 

  19. Sheinin, V.I., et al., Diagnostics of Fast Cyclic Changes of Stresses in Rocks by the Data of Infrared Radiometry, Fiz. Zemli, 2001, no. 4.

    Google Scholar 

  20. Lykov, A.V., Teoriya teploprovodnosti (Theory of Heat Conductivity), Moscow: Vyssh. shkola, 1967.

    Google Scholar 

  21. Dortman, N.B., Fizicheskie svoistva gornykh porod i poleznykh iskopaemykh (Physical Properties of Rocks and Minerals), Moscow: Nedra, 1984.

    Google Scholar 

  22. Oparin, V.N. and Tanaino, A.S., Kanonicheskaya shkala ierarkhicheskikh predstavlenii v gornom porodovedenii (Canonical Scale for Presentation of Hierarchies in the Science on Rocks), Novosibirsk: Nauka, 2011.

    Google Scholar 

  23. Oparin, V.N. and Tanaino, A.S., A New Method to Test Rock Abrasiveness Based on Physico-Mechanical and Structural Properties of Rocks, J. Rock Mech. Geotech. Eng., 2015. http://dxdoiorg/10/1016/jjrmge.2014.12.004.

    Google Scholar 

  24. Landau, L.D. and Lifshits, E.M., Teoriya uprugosti (Theory of Elasticity), Moscow: GIFML, 1965.

    Google Scholar 

  25. Kiryaeva, T.A., Razrabotka metoda gazodinamicheskoi aktivnosti ugol’nykh plastov po geologorazvedochnym dannym na primere Kuzbassa (Gas-Dynamic Activity Method for Coal Beds Based on Geological Exploration Data in Terms of Kuzbass), Saarbrucken, Germany: LAP LAMBERT Academic Publishing GmbH & Co, 2011.

    Google Scholar 

  26. Kiryaeva, T.A., Evaluation of Methane Resources in Kuzbass in the Context of New Ideas on Methane Occurrence in Coal Beds, J. Min. Sci., 2012, vol. 48, no. 5, pp. 825–831.

    Article  Google Scholar 

  27. Oparin, V.N., Usol’tseva, O.M., Semenov, V.N., and Tsoi, P.A., Evolution of Stresses and Strains in Artificial Geomaterials under Uniaxial and Biaxial Loading, Vestn. Inzh. Shkoly DVFU, 2014, no. 3.20).

    Google Scholar 

  28. Oparin, V.N., Usoltseva, O.M., Tsoi, P.A., and Semenov, V.N., Evolution of Stress–Strain State in the Structural Heterogeneities of Geomaterials under Uniaxial and Biaxial Loading, J. Applied Mathematics and Physics, 2014., No. 2.

    Google Scholar 

  29. Kurlenya, M.V. and Oparin, V.N., Sign-Variable Reaction of Rocks to Dynamic Impact, J. Min. Sci., 1990, vol. 26, no. 4, pp. 291–300.

    Google Scholar 

  30. Oparin, V.N., Simonov, B.F., Yushkin, V.F., Vostrikov, V.I., Pogarsky, Yu.V., and Nazarov, L.A., Geomekhanicheskie i tekhnicheskie osnovy uvelicheniya nefteotdachi plastov v vibrovolnovykh tekhnologiyakh (Geomechanical and Technical Basis for Oil Recovery Enhancement in Vibro Wave Technologies), Novosibirsk: Nauka, 2010.

    Google Scholar 

  31. Oparin, V.N., Energy Criterion of Volumetric Rock Destruction, Miner’s Week-2009 Proc., Moscow: MGGU, 2009.

    Google Scholar 

  32. Oparin, V.N., Tapsiev, A.P., Vostrikov, V.I., et al., On Possible Causes of Increase in Seismic Activity of Mine Fields in the Oktyabrsky and Taimyrsky Mines of the Norilsk Deposit in 2003. Parts I–III, J. Min. Sci., 2004. vol. 40, nos. 4–6, respectively; Part IV, J. Min. Sci., 2005, vol. 41, no. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Oparin.

Additional information

Original Russian Text © V.N. Oparin, T.A. Kiryaeva, O.M. Usol’tseva, P.A. Tsoi, V.N. Semenov, 2015, published in Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2015, No. 4, pp. 3–24.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oparin, V.N., Kiryaeva, T.A., Usol’tseva, O.M. et al. Nonlinear deformation–wave processes in various rank coal specimens loaded to failure under varied temperature. J Min Sci 51, 641–658 (2015). https://doi.org/10.1134/S1062739115040003

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739115040003

Keywords

Navigation