Skip to main content
Log in

High-Quality RNA Extraction and Evaluation of Reference Genes for qPCR Assay of Pinus sylvestris L. Trunk Tissues

  • ORIGINAL RESEARCH
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

Scots pine (Pinus sylvestris L.) is a species of tree with heartwood (HW), which forms during aging of sapwood (SW). Due to a clear-cut border between SW and HW, P. sylvestris should be used as a model woody plant for studying patterns of HW formation. Currently, molecular genetic methods are often used to study the processes of trunk tissues’ formation in woody plants. A feature of coniferous trees’ trunk tissues is a high content of secondary metabolites, a low content of nucleic acids, and potential partial degradation of RNA. In this work, the authors discuss the choice of the most successful method for extracting high-quality RNA for real-time PCR (RT-PCR) in P. sylvestris trunk tissues along the radial vector “conductive phloem/cambial zone–differentiating xylem–exterior part of SW (one to two annual rings)–interior part of SW (one to two annual rings afore transition zone (TZ))–TZ (two annual rings afore HW)” for reproducible RT-PCR data. The expression stability of six potential reference genes (Actin1, α-Tubulin, β-Tubulin, Ef1a, GAPDH, UBQ) was assessed in all describe tissues. Differences in expression levels of target genes are shown by data normalization using reference genes with different stability of expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Antonova, G.F. and Stasova, V.V., Effects of environmental factors on wood formation in larch (Larix deciduas Ldb.) stems, Trees, 1997, vol. 11, p. 462. https://doi.org/10.1007/PL00009687

    Article  Google Scholar 

  2. Bustin, S.A., Benes, V., Garson, J.A., Hellemans, J., Hugget, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M.W., Shipley, G.L., Vandesompele, J., and Wittwer, C.T., The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments, Clin. Chem., 2009, vol. 55, p. 611. https://doi.org/10.1373/clinchem.2008.112797

    Article  CAS  PubMed  Google Scholar 

  3. Bustin, S.A., Beaulieu, J.F., Huggett, J., Jaggi, R., Kibenge, F.S., Olsvik, P.A., Penning, L.C., and Toegel, S., MIQE précis: practical implementation of minimum standard guidelines for fluorescence-based quantitative real-time PCR experiments, BMC Mol. Biol., 2010, vol. 11, p. 74. https://doi.org/10.1186/1471-2199-11-74

    Article  PubMed  PubMed Central  Google Scholar 

  4. de Castro, E., Sigrist, C.J., Gattiker, A., Bulliard, V., Langendijk-Genevaux, P.S., Gasteiger, E., Bairoch, A., and Hulo, N., ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins, Nucleic Acids Res., 2006, vol. 34, p. 362. https://doi.org/10.1093/nar/gkl124

  5. Chan, K.L., Ho, C.L., Namasivayam, P., and Napis, S., A simple and rapid method for rna isolation from plant tissues with high phenolic compounds and polysaccharides, Prot. Exchange, 2007. https://doi.org/10.1038/nprot.2007

  6. Chang, S., Puryear, J., and Cairney, J., A simple and efficient method for isolating RNA from pine trees, Plant Mol. Biol. Rep., 1993, vol. 11, p. 113.

    Article  CAS  Google Scholar 

  7. Chang, E., Shi, S., Liu, J., Cheng, T., Xue, L., Yang, X., Yang, W., Lan, Q., and Jiang, Z., Selection of reference genes for quantitative gene expression studies in Platycladus orientalis (Cupressaceae) using real-time PCR, PLoS One, 2012, vol. 7, no. 3, p. e33278.https://doi.org/10.1371/journal.pone.0033278

  8. Chen, Y., Weining, S., and Daggard, G., Preparation of total RNA from a very small wheat embryo suitable for differential display, Ann. Appl. Biol., 2003, vol. 143, p. 261. https://doi.org/10.1111/j.1744-7348.2003.tb00293.x

    Article  CAS  Google Scholar 

  9. Chen, H., Yang, Z., Hu, Y., Tan, J., Jia, J., Xu, H., and Chen, X., Reference genes selection for quantitative gene expression studies in Pinus massoniana L., Trees, 2016, vol. 30, p. 685. https://doi.org/10.1371/journal.pone.0205182

    Article  CAS  Google Scholar 

  10. Chi, X., Hu, R., Yang, Q., Zhang, X., Pan, L., Chen, N., Chen, M., Yang, Z., Wang, T., He, Y., and Yu, S., Validation of reference genes for gene expression studies in peanut by quantitative real-time RT-PCR, Mol. Genet. Genomics, 2012, vol. 287, no. 2, p. 167. https://doi.org/10.1007/s00438-011-0665-5

    Article  CAS  PubMed  Google Scholar 

  11. Fischer, U., Kucukoglu, M., Helariutta, Y., and Bhalerao, R.P., The dynamics of cambial stem cell activity, Annu. Rev. Plant Biol., 2019, vol. 70, p. 293. https://doi.org/10.1146/annurev-arplant-050718-100402

    Article  CAS  PubMed  Google Scholar 

  12. Ghawana, S., Paul, A., Kumar, H., Kumar, A., Singh, H., Bhardwaj, P.K., Rani, A., Singh, R.S., Raizada, J., Singh, K., and Kumar, S., An RNA isolation system for plant tissues rich in secondary metabolites, BMC Res. Notes, 2007, vol. 4, p. 85. https://doi.org/10.1186/1756-0500-4-85

    Article  CAS  Google Scholar 

  13. Han, X., Lu, M., Chen, Y., Zhan, Z., Cui, Q., and Wang, Y., Selection of reliable reference genes for gene expression studies using real-time PCR in tung tree during seed development, PLoS One, 2012, vol. 7, p. e43084. https://doi.org/10.1371/journal.pone.0043084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kumar, S., Stecher, G., and Tamura, K., MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 2016, vol. 33, p. 1870. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lal, L., Sahoo, R., Gupta, R.K., Sharma, P., and Kumar, S., RNA isolation from high-phenolic tea leaves and apical buds, Plant Mol. Biol. Rep., 2001, vol. 19, p. 181а. https://doi.org/10.1007/BF02772161

    Article  Google Scholar 

  16. Lim, K.J., Paasela, T., Harju, A., Venäläinen, M., Paulin, L., Auvinen, P., Karkkainen, K., and Teeri, T.H., Developmental changes in scots pine transcriptome during heartwood formation, Plant Physiol., 2016, vol. 172, p. 1403. https://doi.org/10.1104/pp.16.01082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Marchler-Bauer, A. and Bryant, S.H., Cd-search: protein domain annotations on the fly, Nucleic Acids Res., 2004, vol. 32, p. 327. https://doi.org/10.1093/nar/gkh454

    Article  CAS  Google Scholar 

  18. Meyer-Gauen, G., Herbrand, H., Pahnke, J., Cerff, R., and Martin, W., Gene structure, expression in Escherichia coli and biochemical properties of the NAD1-dependent glyceraldehyde-3-phosphatedehydrogenase from Pinus sylvestris chloroplasts, Gene, 1998, vol. 209, p. 167. https://doi.org/10.1016/S0378-1119(98)00034-1

    Article  CAS  PubMed  Google Scholar 

  19. Mo, J., Xu, J., Jin, W., Yang, L., Yin, T., and Shi, J., Identification of reference genes for quantitative gene expression studies in Pinus massoniana and its introgression hybrid, Forests, 2019, vol. 10, p. 787. https://doi.org/10.3390/f10090787

    Article  Google Scholar 

  20. Niu, X., Zhang, G., Xu, J., Tao, A., Fang, P., and Su, J., Selection of reliable reference genes for quantitative real-time PCR gene expression analysis in jute (Corchorus capsularis) under stress treatments, Front. Plant Sci., 2015, vol. 6, p. 848. https://doi.org/10.3389/fpls.2015.00848

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pfaffl, M.W., A new mathematical model for relative quantification in real-time RT-PCR, Nucleic Acids Res., 2001, vol. 29, p. E45. https://doi.org/10.1093/nar/29.9.e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ramakers, C., Ruijter, J.M., Deprez, R.H., and Moorman, A.F., Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data, Neurosci. Lett., 2003, vol. 339, p. 62. https://doi.org/10.1016/S0304-3940(02)01423-4

    Article  CAS  PubMed  Google Scholar 

  23. Saitou, N. and Nei, M., The Neighbor-Joining Method—a new method for reconstructing phylogenetic trees, Mol. Biol. Evol., 1987, vol. 4, p. 406. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  PubMed  Google Scholar 

  24. Svec, D., Tichopad, A., Novosadova, V., Pfaffl, M.W., and Kubista, M., How good is a PCR efficiency estimate: recommendations for precise and robust qPCR efficiency assessments, Biomol. Detect. Quantif., 2015, vol. 3, p. 9. https://doi.org/10.1016/j.bdq.2015.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Taylor, S., Wakem, M., Dijkman, G., Alsarraj, M., and Nguyen, M., A practical approach to rt-qpcr-publishing data that conform to the MIQE guidelines, Methods, 2010, vol. 50, p. S1. https://doi.org/10.1016/j.ymeth.2010.01.005

    Article  CAS  PubMed  Google Scholar 

  26. Xu, M., Zang, B., Yao, H.S., and Huang, M.R., Isolation of high quality RNA and molecular manipulations with various tissues of Populus, Russ. J. Plant Physiol., 2009, vol. 56, no. 5, p. 716.

    Article  CAS  Google Scholar 

  27. Zhu, P., Ma, Y., Zhu, L., Chen, Y., Li, R., and Ji, K., Selection of suitable reference genes in Pinus massoniana Lamb. under different abiotic stresses for qPCR normalization, Forests, 2019, vol. 10, p. 632. https://doi.org/10.3390/f10080632

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The studies were carried out on the scientific equipment of the Center for Collective Use of the Federal Research Center Karelian Scientific Center, Russian Academy of Sciences.

Funding

The work was carried out within the framework of the state task of the Forest Institute (a separate subdivision of the Federal State Budgetary Institution of Science of the Federal Research Center Karelian Scientific Center, Russian Academy of Sciences) Comprehensive Study of the Productivity Factors of Taiga Forests (2021–2025, leader A.M. Kryshen, Ministry of Education and Science of Russia, 0185-2021-0018), state registration number 121061500082-2, with partial financial support from the Russian Science Foundation (grant 21-14-00204 (2021–2023, leader N.A. Galibina), phylogenetic analysis of reference and target genes).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. L. Moshchenskaya.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement of compliance with standards of research involving humans as subjects. Humans and animals were not used as subjects in this study.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moshchenskaya, Y.L., Galibina, N.A., Korzhenevskiy, M.A. et al. High-Quality RNA Extraction and Evaluation of Reference Genes for qPCR Assay of Pinus sylvestris L. Trunk Tissues. Russ J Dev Biol 54, 24–36 (2023). https://doi.org/10.1134/S1062360423010095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360423010095

Keywords:

Navigation