Skip to main content
Log in

RETRACTED ARTICLE: Transient Receptor Potential (TRP) Family of Channel Proteins

  • REVIEWS
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

This article was retracted on 01 February 2023

This article has been updated

Abstract

Proteins with a transient receptor potential (TRP) function in the cell membrane as Ca2+-permeable nonselective cation channels. TRP channels play a critical role in the functioning of sensory systems: visual, gustatory, olfactory, auditory, haptic, thermoregulatory, and osmoregulatory. Some members of this superfamily play an important role in the control of growth, differentiation, proliferation, cell polarization, and apoptosis. TRP channels exhibit more diverse activation and selectivity mechanisms than any other group of ion channels—one TRP channel can be activated through multiple mechanisms. However, the TRP family proteins have in common that they play a decisive role in the perception of all major classes of external stimuli and are capable of defining the local changes in the internal environment. The explosion of interest in TRP channels over the past two decades has led to a radical restructuring of the family. The review is devoted to the description of channel proteins receptors of the TRP family, the history of their study, and classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Change history

REFERENCES

  1. Abed-Vieillard, D., Cortot, J., Everaerts, C., et al., Choice alters Drosophila oviposition site preference on menthol, Biol. Open, 2014, vol. 3, no. 1, pp. 22–28.

    Article  PubMed  Google Scholar 

  2. Abramowitz, J. and Birnbaumer, L., Physiology and pathophysiology of canonical transient receptor potential channels, FASEB J., 2009, vol. 23, no. 2, pp. 297–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aceves-Piña, E.O., Quinn, W.G., Smith, K.D., et al., Learning in normal and mutant Drosophila larvae, Science, 1979, vol. 206, no. 4414, pp. 93–96.

    Article  PubMed  Google Scholar 

  4. Arenas, O.M., Zaharieva, E.E., Para, A., et al., Activation of planarian TRPA1 by reactive oxygen species reveals a conserved mechanism for animal nociception, Nat. Neurosci., 2017, vol. 20, no. 12, pp. 1686–1693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Arias-Darraz, L., Cabezas, D., Colenso, C.K., et al., A transient receptor potential ion channel in Chlamydomonas shares key features with sensory transduction-associated TRP channels in mammals, Plant Cell, 2015, vol. 27, no. 1, pp. 177–188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bandell, M., Story, G.M., Hwang, S.W., Viswanath, V., et al., Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin, Neuron, 2004, vol. 41, no. 6, pp. 849–857.

    Article  CAS  PubMed  Google Scholar 

  7. Bargal, R., Avidan, N., Ben-Asher, E., et al., Identification of the gene causing mucolipidosis type IV, Nat. Genet., 2000, vol. 26, no. 1, pp. 118–122.

    Article  CAS  PubMed  Google Scholar 

  8. Bautista, D.M., Movahed, P., Hinman, A., et al., Pungent products from garlic activate the sensory ion channel TRPA1, Proc. Natl. Acad. Sci. U. S. A., 2005, vol. 102, no. 34, pp. 12248–12252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bohlen, C.J., Priel, A., Zhou, S., et al., A bivalent tarantula toxin activates the capsaicin receptor, TRPV1, by targeting the outer pore domain, Cell, 2010, vol. 141, no. 5, pp. 834–845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Caterina, M.J., Schumacher, M., Tominaga, M., et al., The capsaicin receptor: a heat-activated ion channel in the pain pathway, Nature, 1997, vol. 389, no. 6653, pp. 816–824.

    Article  CAS  PubMed  Google Scholar 

  11. Caterina, M.J., Rosen, T.A., Tominaga, M., et al., A capsaicin-receptor homologue with a high threshold for noxious heat, Nature, 1999, vol. 398, no. 6726, pp. 436–441.

    Article  CAS  PubMed  Google Scholar 

  12. Caterina, M.J., Leffler, A., Malmberg, A.B., et al., Impaired nociception and pain sensation in mice lacking the capsaicin receptor, Science, 2000, vol. 288, no. 5464, pp. 306–313.

    Article  CAS  PubMed  Google Scholar 

  13. Cheng, L.E., Song, W., Looger, L.L., et al., The role of the TRP channel NompC in Drosophila larval and adult locomotion, Neuron, 2010, vol. 67, no. 3, pp. 373–380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Clapham, D.E., TRP channels as cellular sensors, Nature, 2003, vol. 426, no. 6966, pp. 517–524.

    Article  CAS  PubMed  Google Scholar 

  15. Clark, K., Middelbeek, J., and van Leeuwen, F.N., Interplay between TRP channels and the cytoskeleton in health and disease, Eur. J. Cell Biol., 2008, vol. 87, nos. 8–9, pp. 631–640.

    Article  CAS  PubMed  Google Scholar 

  16. Colbert, H.A. and Bargmann, C.I., Odorant-specific adaptation pathways generate olfactory plasticity in C. elegans,Neuron, 1995, vol. 14, no. 4, pp. 803–812.

    Article  CAS  PubMed  Google Scholar 

  17. Colbert, H.A., Smith, T.L., and Bargmann, C.I., OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans,J. Neurosci., 1997, vol. 17, no. 21, pp. 8259–8269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Corey, D.P., García-Añoveros, J., Holt, J.R., et al., TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells, Nature, 2004, vol. 432, no. 7018, pp. 723–730.

    Article  CAS  PubMed  Google Scholar 

  19. Corfas, G. and Dudai, Y., Adaptation and fatigue of a mechanosensory neuron in wild-type Drosophila and in memory mutants, J. Neurosci., 1990, vol. 10, no. 2, pp. 491–499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cosens, D.J. and Manning, A., Abnormal electroretinogram from a Drosophila mutant, Nature, 1969, vol. 224, no. 5216, pp. 285–287.

    Article  CAS  PubMed  Google Scholar 

  21. Dadon, D. and Minke, B., Cellular functions of transient receptor potential channels, Int. J. Biochem. Cell Biol., 2010, vol. 42, no. 9, pp. 1430–1445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Denis, V. and Cyert, M.S., Internal Ca2+ release in yeast is triggered by hypertonic shock and mediated by a TRP channel homologue, J. Cell Biol., 2002, vol. 156, no. 1, pp. 29–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Diver, M.M., Cheng, Y., and Julius, D., Structural insights into TRPM8 inhibition and desensitization, Science, 2019, vol. 365, no. 6460, pp. 1434–1440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Driscoll, K., Stanfield, G.M., Droste, R., et al., Presumptive TRP channel CED-11 promotes cell volume decrease and facilitates degradation of apoptotic cells in Caenorhabditis elegans,Proc. Natl. Acad. Sci. U. S. A., 2017, vol. 114, no. 33, pp. 8806–8811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Duan, J., Li, J., Zeng, B., et al., Structure of the mouse TRPC4 ion channel, Nat. Commun., 2018, vol. 9, no. 1, p. 3102.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Duan, J., Li, J., Chen, G.L., et al., Cryo-EM structure of TRPC5 at 2.8-Å resolution reveals unique and conserved structural elements essential for channel function, Sci. Adv., 2019, vol. 5, no. 7, p. eaaw 7935.

  27. Fine, M., Li, X., and Dang, S., Structural insights into group II TRP channels, Cell Calcium, 2020, vol. 86, no. 102107.

  28. Fujiu, K., Nakayama, Y., Iida, H., et al., Mechanoreception in motile flagella of Chlamydomonas,Nat. Cell Biol., 2011, vol. 13, no. 5, pp. 630–632.

    Article  CAS  PubMed  Google Scholar 

  29. Gong, Z., Son, W., Chung, Y.D., et al., Two interdependent TRPV channel subunits, inactive and Nanchung, mediate hearing in Drosophila,J. Neurosci., 2004, vol. 24, no. 41, pp. 9059–9066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Göpfert, M.C., Albert, J.T., Nadrowski, B., et al., Specification of auditory sensitivity by Drosophila TRP channels, Nat. Neurosci., 2006, vol. 9, no. 8, pp. 999–1000.

    Article  PubMed  Google Scholar 

  31. Hall, D.P., Cost, N.G., Hegde, S., et al., TRPM3 and miR-204 establish a regulatory circuit that controls oncogenic autophagy in clear cell renal cell carcinoma, Cancer Cell, 2014, vol. 26, no. 5, pp. 738–753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hardie, R.C. and Minke, B., The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors, Neuron, 1992, vol. 8, no. 4, pp. 643–651.

    Article  CAS  PubMed  Google Scholar 

  33. Hardie, R.C. and Raghu, P., Visual transduction in Drosophila,Nature, 2001, vol. 413, no. 6852, pp. 186–193.

    Article  CAS  PubMed  Google Scholar 

  34. Hille, B., Ionic Channels of Excitable Membranes, Sunderland, MA: Sinauer Associate, Inc., 1992, vol. 2.

    Google Scholar 

  35. Himmel, N.J., Letcher, J.M., Sakurai, A., et al., Drosophila menthol sensitivity and the Precambrian origins of transient receptor potential-dependent chemosensation, Phil. Trans. R. Soc., 2019, vol. 374, nos. 1785/0369.

  36. Himmel, N.J., Gray, T.R., and Cox, D.N., Phylogenetics identifies two eumetazoan TRPM clades and an eighth TRP family, TRP Soromelastatin (TRPS), Mol. Biol. Evol., 2020, vol. 37, no. 7, pp. 2034–2044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hinman, A., Chuang, H.-H., Bautista, D.M., et al., TRP channel activation by reversible covalent modification, Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, no. 51, pp. 19564–19568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Homyk, T. and Sheppard, D.E., Behavioral mutants of Drosophila melanogaster. I. Isolation and mapping of mutations which decrease flight ability, Genetics, 1977, vol. 87, no. 1, pp. 95–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huang, K., Diener, D.R., Mitchell, A., et al., Function and dynamics of PKD2 in Chlamydomonas reinhardtii flagella, J. Cell Biol., 2007, vol. 179, no. 3, pp. 501–514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang, Y., Fliegert, R., Guse, A.H., et al., A structural overview of the ion channels of the TRPM family, Cell Calcium, 2020, vol. 85, p. 10211.

    Article  Google Scholar 

  41. Jaquemar, D., Schenker, T., and Trueb, B., An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts, J. Biol. Chem., 1999, vol. 274, no. 11, pp. 7325–7333.

    Article  CAS  PubMed  Google Scholar 

  42. Jordt, S.E., Bautista, D.M., Chuang, H.H., et al., Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1, Nature, 2004, vol. 427, no. 6971, pp. 260–265.

    Article  CAS  PubMed  Google Scholar 

  43. Julius, D., From peppers to peppermints: natural products as probes of the pain pathway, Harvey Lect., 2005, vol. 101, pp. 89–115.

    CAS  PubMed  Google Scholar 

  44. Kang, K., Pulver, S.R., Panzano, V.C., et al., Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception, Nature, 2010, vol. 464, no. 7288, pp. 597–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kaplan, W.D., iav: inactive, Dros. Inform. Serv., 1977, vol. 52, no. 1.

  46. Katz, B. and Minke, B., Drosophila photoreceptors and signaling mechanisms, Front. Cell Neurosci., 2009, vol. 32.

  47. Kernan, M. and Zuker, C., Genetic approaches to mechanosensory transduction, Curr. Opin. Neurobiol., 1995, vol. 5, no. 4, pp. 443–448.

    Article  CAS  PubMed  Google Scholar 

  48. Kernan, M., Cowan, D., and Zuker, C., Genetic dissection of mechanosensory transduction: mechanoreception-defective mutations of Drosophila,Neuron, 1994, vol. 12, no. 6, pp. 1195–1206.

    Article  CAS  PubMed  Google Scholar 

  49. Lange, M., Weihmann, F., Schliebner, I., et al., The transient receptor potential (TRP) channel family in Colletotrichum graminicola: a molecular and physiological analysis, PLoS One, 2016, vol. 11, no. 6, р. e0158561.

  50. Laursen, W.J., Anderson, E.O., Hoffstaetter, L.J., et al., Species-specific temperature sensitivity of TRPA1, Temperature, 2015, vol. 2, no. 2, pp. 214–226.

    Article  Google Scholar 

  51. Li, Y., Bai, P., Wei, L., et al., Capsaicin functions as Drosophila ovipositional repellent and causes intestinal dysplasia, Sci. Rep., 2020, vol. 10, no. 1, p. 9963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liang, X., Madrid, J., Saleh, H.S., et al., NOMPC, a member of the TRP channel family, localizes to the tubular body and distal cilium of Drosophila campaniform and chordotonal receptor cells, Cytoskeleton, 2011, vol. 68, no. 1, pp. 1–7.

    Article  CAS  PubMed  Google Scholar 

  53. Lopez-Bellido, R., Himmel, N.J., Gutstein, H.B., et al., An assay for chemical nociception in Drosophila larvae, Philos. Trans. R. Soc. London B., 2019, vol. 374, no. 1785, p. 20190282.

  54. Lozano, C., Córdova, C., Marchant, I., et al., Intracellular aggregated TRPV1 is associated with lower survival in breast cancer patients, Breast Cancer: Targets Ther., 2018, vol. 10, pp. 161–168.

    CAS  Google Scholar 

  55. McClung, C. and Hirsh, J., The trace amine tyramine is essential for sensitization to cocaine in Drosophila,Curr. Biol., 1999, vol. 9, no. 16, pp. 853–860.

    Article  CAS  PubMed  Google Scholar 

  56. McKemy, D., Neuhausser, W., and Julius, D., Identification of a cold receptor reveals a general role for TRP channels in thermosensation, Nature, 2002, vol. 416, pp. 52–58.

    Article  CAS  PubMed  Google Scholar 

  57. Meseguer, V., Alpizar, Y.A., Luis, E., et al., TRPA1 channels mediate acute neurogenic inflammation and pain produced by bacterial endotoxins, Nat. Commun., 2014, vol. 5, p. 3125.

    Article  PubMed  Google Scholar 

  58. Miller, B.A., The role of TRP channels in oxidative stress-induced cell death, J. Membr. Biol., 2006, vol. 209, no. 1, pp. 31–41.

    Article  CAS  PubMed  Google Scholar 

  59. Minke, B. and Cook, B., TRP channel proteins and signal transduction, Physiol. Rev., 2002, vol. 82, no. 2, pp. 429–472.

    Article  CAS  PubMed  Google Scholar 

  60. Mochizuki, T., Wu, G., Hayashi, T., et al., PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein, Science, 1996, vol. 272, no. 5266, pp. 1339–1342.

    Article  CAS  PubMed  Google Scholar 

  61. Montell, C., Physiology, phylogeny, and functions of the TRP superfamily of cation channels, Sci. STKE, 2001, vol. 2001, no. 90, pp. 1–17.

    Article  Google Scholar 

  62. Montell, C., The TRP superfamily of cation channels, Sci. Signal., 2005, no. 272, p. re3.

  63. Montell, C. and Rubin, G.M., Molecular characterization of the Drosophila TRP locus: a putative integral membrane protein required for phototransduction, Neuron, 1989, vol. 2, no. 4, pp. 1313–1323.

    Article  CAS  PubMed  Google Scholar 

  64. Morris, Z., Sinha, D., Poddar, A., et al., Fission yeast TRP channel Pkd2p localizes to the cleavage furrow and regulates cell separation during cytokinesis, Mol. Biol. Cell, 2019, vol. 30, no. 15, pp. 1791–1804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nicholls, J.G. and Baylor, D.A., Specific modalities and receptive fields of sensory neurons in CNS of the leech, J. Neurophysiol., 1968, vol. 31, no. 5, pp. 740–756.

    Article  CAS  PubMed  Google Scholar 

  66. Nilius, B. and Mahieu, F., A road map for TR(I)Ps, Mol. Cell, 2006, vol. 22, no. 3, pp. 297–307.

    Article  CAS  PubMed  Google Scholar 

  67. Nilius, B. and Voets, T., TRP channels: a TR(I)P through a world of multifunctional cation channels, Pflugers Arch., 2005, vol. 451, no. 1, pp. 1–10.

    Article  CAS  PubMed  Google Scholar 

  68. Nilius, B., Voets, T., and Peters, J., TRP channels in disease, Sci. STKE, 2005, no. 295, p. re8.

  69. Nishida, M., Hara, Y., Yoshida, T., et al., TRP channels: molecular diversity and physiological function, Microcirculation, 2006, vol. 13, no. 7, pp. 535–550.

    Article  CAS  PubMed  Google Scholar 

  70. Ogino, T. and Toyohara, H., Identification of possible hypoxia sensor for behavioral responses in a marine annelid, Capitella teleta,Biol. Open, 2019, vol. 8, p. bio037630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Palermo, N.N., Brown, H.K., and Smith, D.L., Selective neurotoxic action of capsaicin on glomerular C-type terminals in rat substantia gelatinosa, Brain Res., 1981, vol. 208, no. 2, pp. 506–510.

    Article  CAS  PubMed  Google Scholar 

  72. Palmer, C.P., Zhou, X.-L., Lin, J., et al., A TRP homolog in Saccharomyces cerevisiae forms an intracellular Ca2+-permeable channel in the yeast vacuolar membrane, Proc. Natl. Acad. Sci. U. S. A., 2001, vol. 98, no. 14, pp. 7801–7805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pastor, J., Soria, B., and Belmonte, C., Properties of the nociceptive neurons of the leech segmental ganglion, J. Neurophysiol., 1996, vol. 75, no. 6, pp. 2268–2279.

    Article  CAS  PubMed  Google Scholar 

  74. Paulsen, C.E., Armache, J.-P., Gao, Y., et al., Structure of the TRPA1 ion channel suggests regulatory mechanisms, Nature, 2015, vol. 525, no. 7570, pp. 511–517.

    Article  Google Scholar 

  75. Peier, A.M., Moqrich, A., Patapoutian, A., et al., A TRP channel that senses cold stimuli and menthol, Cell, 2002a, vol. 108, no. 5, pp. 705–715.

    Article  CAS  PubMed  Google Scholar 

  76. Peier, A.M., Reeve, A.J., Andersson, D.A., et al., A heat-sensitive TRP channel expressed in keratinocytes, Science, 2002b, vol. 296, no. 5575, pp. 2046–2049.

    Article  CAS  PubMed  Google Scholar 

  77. Peng, G., Shi, X., and Kadowaki, T., Evolution of TRP channels inferred by their classification in diverse animal species, Mol. Phylogenet. Evol., 2015, vol. 84, pp. 145–157.

    Article  CAS  PubMed  Google Scholar 

  78. Phillips, A.M., Bull, A., and Kelly, L.E., Identification of a Drosophila gene encoding a calmodulin-binding protein with homology to the trp phototransduction gene, Neuron, 1992, vol. 8, no. 4, pp. 631–642.

    Article  CAS  PubMed  Google Scholar 

  79. Prevarskaya, N., Zhang, L., and Barritt, G., TRP channels in cancer, Biochim. Biophys. Acta, 2007, vol. 1772, no. 8, pp. 937–946.

    Article  CAS  PubMed  Google Scholar 

  80. Pryor, P.R., Reimann, F., Gribble, F.M., et al., Mucolipin-1 is a lysosomal membrane protein required for intracellular lactosylceramide traffic, Traffic, 2006, vol. 7, no. 10, pp. 1388–1398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Quinn, W.G., Harris, W.A., and Benzer, S., Conditioned behavior in Drosophila melanogaster,Proc. Natl. Acad. Sci. U. S. A., 1974, vol. 71, no. 3, pp. 708–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rawls, S.M., Gomez, T., Ding, Z., et al., Differential behavioral effect of the TRPM8/TRPA1 channel agonist icilin (AG-3-5), Eur. J. Pharmacol., 2007, vol. 575, nos. 1–3, pp. 103–104.

    Article  CAS  PubMed  Google Scholar 

  83. Schüler, A., Schmitz, G., Reft, A., et al., The rise and fall of TRP-N, an ancient family of mechanogated ion channels, in Metazoa, Genome Biol. Evol., 2015, vol. 7, no. 6, pp. 1713–1727.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Soldano, A., Alpizar, Y.A., Boonen, B., et al., Gustatory-mediated avoidance of bacterial lipopolysaccharides via TRPA1 activation in Drosophila, eLife, 2016, no. 5, p. e13133.

  85. Story, G.M., Peier, A.M., Reeve, A.J., et al., ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures, Cell, 2003, vol. 112, no. 6, pp. 819–829.

    Article  CAS  PubMed  Google Scholar 

  86. Sun, L., Hua, Y., Vergarajauregui, S., et al., Novel role of TRPMl2 in the regulation of the innate immune response, J. Immunol., 2015, vol. 195, no. 10, pp. 4922–4932.

    Article  CAS  PubMed  Google Scholar 

  87. Tang, Q., Guo, W., Zheng, L., et al., Structure of the receptor-activated human TRPC6 and TRPC3 ion channels, Cell Res., 2018, vol. 28, pp. 746–755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Thurm, U., An insect mechanoreceptor. Part I. Fine structure and adequate stimulus, Cold Spring Harb. Symp. Quant. Biol., 1965, vol. 30, pp. 75–82.

    Article  CAS  PubMed  Google Scholar 

  89. Tominaga, M., Caterina, M.J., Malmberg, A.B., et al., The cloned capsaicin receptor integrates multiple pain-producing stimuli, Neuron, 1998, vol. 21, no. 3, pp. 531–543.

    Article  CAS  PubMed  Google Scholar 

  90. Tracey, W.D., Wilson, R.I., Laurent, G., et al., Painless, a Drosophila gene essential for nociception, Cell, 2003, vol. 113, no. 2, pp. 261–273.

    Article  CAS  PubMed  Google Scholar 

  91. Turner, H.N., Armengol, K., Patel, A.A., et al., The TRP channels Pkd2, NompC, and Trpm act in cold-sensing neurons to mediate unique aversive behaviors to noxious cold in Drosophila,Curr. Biol., 2016, vol. 26, no. 23, pp. 3116–3128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Venkatachalam, K. and Montell, C., TRP channels, Annu. Rev. Biochem., 2007, vol. 76, pp. 387–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Viana, F., TRPA1 channels: molecular sentinels of cellular stress and tissue damage, J. Physiol., 2016, vol. 594, no. 15, pp. 4151–4169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Viswanath, V., Story, G.M., Peier, A.M., et al., Opposite thermosensor in fruit fly and mouse, Nature, 2003, vol. 423, no. 6942, pp. 822–823.

    Article  CAS  PubMed  Google Scholar 

  95. Walker, R.G., Willingham, A.T., and Zuker, C.S., A Drosophila mechanosensory transduction channel, Science, 2000, vol. 287, no. 5461, pp. 2229–2234.

    Article  CAS  PubMed  Google Scholar 

  96. Walters, E.T. and Williams, A.C.C., Evolution of mechanisms and behaviour important for pain, Philos. Trans. R. Soc., B, 2019, vol. 374, no. 1785, p. 20190275.

  97. Wang, H., Cheng, X., Tian, J., et al., TRPC channels: structure, function, regulation and recent advances in small molecular probes, Pharmacol. Ther., 2020, vol. 209, no. 1, pp. 497–107.

    Article  Google Scholar 

  98. Wes, P.D., Chevesich, J., Jeromin, A., et al., TRPC1, a human homolog of a Drosophila store-operated channel, Proc. Natl. Acad. Sci. U. S. A., 1995, vol. 92, no. 21, pp. 9652–9656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Winston, K.R. and Lutz, W., Linear accelerator as a neurosurgical tool for stereotactic radiosurgery, Neurosurgery, 1988, vol. 22, no. 3, pp. 454–464.

    Article  CAS  PubMed  Google Scholar 

  100. Wong, F., Schaefer, E.L., Roop, B.C., et al., Proper function of the Drosophila trp gene product during pupal development is important for normal visual transduction in the adult, Neuron, 1989, vol. 3, no. 1, pp. 81–94.

    Article  CAS  PubMed  Google Scholar 

  101. Wong, K.K., Banham, A.H., Yaacob, N.S., et al., The oncogenic roles of TRPM ion channels in cancer, J. Cell. Physiol., 2019, vol. 234, pp. 14556–14573.

    Article  CAS  PubMed  Google Scholar 

  102. Yan, Z., Zhang, W., He, Y., et al., Drosophila NOMPC is a mechanotransduction channel subunit for gentle-touch sensation, Nature, 2013, vol. 493, pp. 221–225.

    Article  CAS  PubMed  Google Scholar 

  103. Yin, Y., Wu, M., Zubcevic, L., et al., Structure of the cold- and menthol-sensing ion channel TRPM8, Science, 2018, vol. 359, pp. 237–241.

    Article  CAS  PubMed  Google Scholar 

  104. Yin, Y., Le, S.C., Hsu, A.L., et al., Structural basis of cooling agent and lipid sensing by the cold-activated TRPM8 channel, Science, 2019, vol. 363, no. 6430, р. eaav 9334.

  105. Zhang, W., Cheng, L.E., Kittelmann, M., et al., Ankyrin repeats convey force to gate the NOMPC mechanotransduction channel, Cell, 2015, vol. 162, no. 6, pp. 1391–1403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhu, X., Chu, P.B., Peyton, M., et al., Molecular cloning of a widely expressed human homologue for the Drosophila trp gene, FEBS Lett., 1995, vol. 373, no. 3, pp. 193–198.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research (RFBR), grant no. 20-04-00272а and performed within the framework of the Russian Federation Government Assignment no. 0088-2021-0007 “Molecular Genetic Mechanisms of Regulation of Cellular Differentiation and Morphogenesis.”

Author information

Authors and Affiliations

Authors

Contributions

E.E. Kuvaeva conducted an analysis of world literature and participated in writing the main text of the article. I.B. Mertsalov participated in the editing and discussion of the text of the article. O.B. Simonova initiated the writing of the review and edited the text.

Corresponding author

Correspondence to O. B. Simonova.

Ethics declarations

The authors declare that they have no conflicts of interest.

This paper does not contain information on any studies involving humans or animals performed by the authors.

Additional information

Translated by E. Tolkunova

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1134/S1062360423330019"

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuvaeva, E.E., Mertsalov, I.B. & Simonova, O.B. RETRACTED ARTICLE: Transient Receptor Potential (TRP) Family of Channel Proteins. Russ J Dev Biol 53, 309–320 (2022). https://doi.org/10.1134/S1062360422050046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360422050046

Keywords:

Navigation