Skip to main content

Abstract

The transient receptor potential (TRP1) ion channels are named after the role of the channels in Drosophila phototransduction (Montell 2001). The mammalian genes are encoded by at least 28 channel subunit genes (Clapham 2003; Moran et al. 2004; Clapham et al. 2005). Six protein families comprise the mammalian TRP superfamily: the classic TRPs (TRPCs), the vanilloid receptor TRPs (TRPVs), the melastatin or long TRPs (TRPMs), the mucolipins (TRPMLs), the polycystins (TRPPs), and ankyrin transmembrane protein 1 (ANKTM1, TRPA1). The TRP channel primary structures predict six transmembrane (TM) domains with a pore domain between the fifth (S5) and sixth (S6) segments and both C and N termini presumably located intracellularly (Vannier et al. 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 5,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

TRP Channels

  • Albert AP, Large WA (2003) Store-operated Ca2+-permeable non-selective cation channels in smooth muscle cells. Cell Calcium 33:345–356

    Article  CAS  PubMed  Google Scholar 

  • Birnbaumer L, Yidirim E, Abramowitz J (2003) A comparison of the genes coding for canonical TRP channels and their M, V and P relatives. Cell Calcium 33:419–432

    Article  CAS  PubMed  Google Scholar 

  • Clapham DE (2003) TRP channels as cellular sensors. Nature (London) 426:517–524

    Google Scholar 

  • Clapham DE, Julius D, Montell C, Schultz G (2005) International Union of Pharmacology. XLIX. Nomenclature and structure-function relationships of transient receptor potential channels. Pharamcol Rev 57:427–450

    Article  CAS  Google Scholar 

  • Flockerzi V (2007) An introduction to TRP channels. Handb Exp Pharmacol 179:1–19

    Article  CAS  PubMed  Google Scholar 

  • Gudermann T, Flockerzi V (2005) TRP channels as new pharmacological targets. Naunyn-Schmiedebergs Arch Pharmacol 371:241–244

    Article  CAS  PubMed  Google Scholar 

  • Harteneck C (2003) Proteins modulating TRP channel function. Cell Calcium 33:303–310

    Article  CAS  PubMed  Google Scholar 

  • Kumar B, Dreja K, Shah SS, Cheong A, Xu SZ, Sukumar P, Naylor J, Forte A, Cipollaro M, McHugh D, Kingston PA, Heagerty AM, Munsch CM, Bergdahl A, HultgÃ¥rdh-Nilsson A, Gomez MF, Porter KE, Hellstrand P, Beech DJ (2006) Upregulated TRPC1 channel in vascular injury in vivo and its role in human neointimal hyperplasia. Circ Res 98:557–563

    Google Scholar 

  • Li S, Westwick J, Poll C (2003) Transient receptor potential (TRP) channels as potential drug targets in respiratory disease. Cell Calcium 33:551–558

    Article  CAS  PubMed  Google Scholar 

  • Montell C (2001) The venerable invertebrate TRP channels. Cell Calcium 31:409–417

    Google Scholar 

  • Montell C, Birnbaumer L, Flockerzi V (2002) The TRP channels, a remarkable functional family. Cell 108:595–598

    Google Scholar 

  • Moran MM, Xu H, Clapham DE (2004) TRP ion channels in the nervous system. Curr Opin Neurobiol 14:362–369

    Article  CAS  PubMed  Google Scholar 

  • Nilius B (2003) From TRPs to SOCs, CCEs, and CRACs. Consensus and controversies. Cell Calcium 33:293–298

    Article  CAS  PubMed  Google Scholar 

  • Schilling WP (2001) TRP proteins. Novel therapeutic targets for regional blood pressure control? Circ Res 88:256–259

    Article  CAS  PubMed  Google Scholar 

  • Vannier B, Zhu X, Brown D, Birnbaumer L (1998) The membrane topology of human transient receptor potential 3 as inferred from glycosylation-scanning mutagenesis and epitope immunocytochemistry. J Biol Chem 273:8675–8679

    Article  CAS  PubMed  Google Scholar 

  • Voets T, Nilius B (2003) The pore of TRP channels: trivial or neglected? Cell Calcium 33:299–302

    Article  CAS  PubMed  Google Scholar 

TRPC Channels

  • Amiri H, Schultz G, Schäfer M (2003) FRET-based analysis of TRPC subunit stoichiometry. Cell Calcium 33:461–470

    Article  Google Scholar 

  • Basora N, Boulay G, Bilodeau L, Rousseau E, Payett MD (2003) 20-Hydroxyeicosatetraenoic adid (20-HETE) activates mouse TRPC6 channels expressed in HEK293 cells. J Biol Chem 278:31709–31716

    Article  CAS  PubMed  Google Scholar 

  • Bergdahl A, Gomez MF, Dreja K, Xu SZ, Adner M, Beech DJ, Broman J, Hellstrand P, Swärd K (2003) Cholesterol depletion impairs vascular reactivity to endothelin-1 by reducing store-operated Ca2+ entry dependent on TRPC1. Circ Res 93:839–847

    Article  CAS  PubMed  Google Scholar 

  • Corteling RL, Li S, Giddings J, Westwick J, Poll C, Hall IP (2004) Expression of transient receptor potential C6 and related transient receptor potential family members in human airway smooth muscle and lung tissue. Am J Respir Cell Mol Biol 30:145–154

    Article  CAS  PubMed  Google Scholar 

  • Estacion M, Li S, Sinkins WG, Gosling M, Bahra P, Poll C, Westwick J, Schilling WP (2004) Activation of human TRPC6 channels by receptor stimulation. J Biol Chem 279:22047–22056

    Article  CAS  PubMed  Google Scholar 

  • Graziani A, Rosker C, Kohlwein SD, Zhu MX, Romanin C, Sattler WGK, Poteser M (2006) Cellular cholesterol controls TRPC3 function: evidence for a novel dominantnegative knockdown strategy. Biochem J 396:147–155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Groschner K, Rosker C (2005) TRPC3: a versatile transducer molecule that serves integration and diversification of cellular signals. Naunyn-Schmiedebergs Arch Pharmacol 371:251–256

    Article  CAS  PubMed  Google Scholar 

  • Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature (London) 397:259–263

    Article  CAS  Google Scholar 

  • Jho D, Mehta D, Ahmmed G, Gao XP, Tiruppathi C, Broman M, Malik AB (2005) Angiopoietin-1 opposes VEGF-induced increase in endothelial permeability by inhibiting TRPC1- dependent Ca2+ influx. Circ Res 96:1282–1290

    Article  CAS  PubMed  Google Scholar 

  • Jungnickel MK, Marrero H, Birnbaumer L, Lemos JR, Florman HM (2001) Trp2 regulates entry of Ca2+ into mouse sperm triggered by egg ZP3. Nat Cell Biol 3:499–502

    Article  CAS  PubMed  Google Scholar 

  • Kumar B, Dreja K, Shah SS, Cheong A, Xu SZ, Sukumar P, Naylor J, Forte A, Cipollaro M, McHugh D, Kingston PA, Heagerty AM, Munsch CM, Bergdahl A, HultgÃ¥rdh-Nilsson A, Gomez MF, Porter KE, Hellstrand P, Beech DJ (2006) Upregulated TRPC1 channel in vascular injury in vivo and its role in human neointimal hyperplasia. Circ Res 98:557–563

    Google Scholar 

  • Lee J, Cha SK, Sun TJ, Huang CL (2005) PIP2 activates TRPV5 and releases its inhibition by intracellular Mg2+. J Gen Physiol 126:439–451

    Google Scholar 

  • Liman ER (2003) Regulation by voltage and adenine nucleotides of a Ca2+-activated cation channel from hamster vomeronasal sensory neurons. J Physiol (London) 548:777–787

    Article  CAS  Google Scholar 

  • Lintschinger B, Balzer-Geldsetzer M, Baskaran T, Graier WF, Romanin C, Zhu MX, Groschner K (2000) Coassembly of Trp1 and Trp3 proteins generates diacylglycerol- and Ca2+- sensitive cation channels. J Biol Chem 275:27799–27805

    CAS  PubMed  Google Scholar 

  • Maruyama Y, Nakanishi Y, Walsh EJ, Wilson DP, Welsh DG, Cole WC (2006) Heteromultimeric TRPC6-TRPC7 channels contribute to arginine vasopressin-induced cation current of A7r5 vascular smooth muscle cells. Circ Res 98:1520–1527

    Article  CAS  PubMed  Google Scholar 

  • Odell AF, Scott JL, Van Helden DF (2005) Epidermal growth factor induces tyrosine phosphorylation, membrane insertion and activation of transient receptor potential channel 4. J Biol Chem 280:37974–37987

    Article  CAS  PubMed  Google Scholar 

  • Okada T, Inoue R, Yamazaki K, Maeda A, Kurosaki T, Yamakuni T, Tanaka I, Shimizu S, Ikenaka K, Imoto K (1999) Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. Ca2+-permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor. J Biol Chem 274:27359–27370

    Article  CAS  PubMed  Google Scholar 

  • Plant TD, Schaefer M (2003) TRPC4 and TRPD5: receptor-operated Ca2+-permeasble nonselective cation channels. Cell Calcium 33:441–450

    Article  CAS  PubMed  Google Scholar 

  • Putney JW Jr, Trebak M, Vazquez G, Wedel B, Bird GS (2004) Signalling mechanisms for TRPC3 channels. Novartis Found Symp 258:123–133

    Article  CAS  PubMed  Google Scholar 

  • Rao GK, Kaminski NE (2006) Induction of intracellular elevation by Δ9-tetrahydrocannabinol in T cells involves TRPC1 channels. J Leukoc Biol 79:202–213

    Google Scholar 

  • Saleh SN, Albert AP, Peppiat CM, Large WA (2006) Angiotensin II activates two cation channels with distinct TRPC1 and TRCP6 channel properties in rabbit mesenteric artery myocytes. J Physiol (London) 577:479–495

    Article  CAS  Google Scholar 

  • Schaefer M, Plant TD, Obukhov AG, Hofmann T, Gudermann T, Schultz G (2000) Receptor-mediated regulation of the nonselective cation channels TRPC4 and TRPC5. J Biol Chem 275:17517–17526

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Mori E, Mori Y, Mori M, Li J, Ito Y, Inoue R (2004) Multiple regulation by calcium of murine homologues of transient receptor potential proteins TRP6 and TRP7 expressed in HEK293 cells. J Physiol (London) 561:415–437

    Article  CAS  Google Scholar 

  • Shimizu S, Yoshida T, Wakamori M, Ishii M, Okada T, Takahashi M, Seto M, Sakurada K, Kiuchi Y, Mori Y (2006) Ca2+-calmodulin-dependent myosin light chain kinase is essential for activation of TRPC5 channels expressed in HEK293 cells. J Physiol (London) 570:219–235

    CAS  Google Scholar 

  • Smyth JT, Lemonnier L, Vazquez G, Bird GS, Putney JW (2006) Dissociation of regulated trafficking of TRPC3 channels in the plasma membrane from their activation by phospholipase C. J Biol Chem 281:11712–11720

    Article  CAS  PubMed  Google Scholar 

  • Strübing C, Krapivinsky G, Krapivinsky L, Clapham DE (2003) Formation of novel TRPC channels by complex subunit interactions in embryonic brain. J Biol Chem 278:39014–39019

    Article  PubMed  Google Scholar 

  • Takai Y, Sugawara R, Ohinata H, Takai A (2004) Two types of non-selective cation channels by muscarinic stimulation with carbachol in bovine muscle cells. J Physiol (London) 559(3):899–922

    Article  CAS  Google Scholar 

  • Trebak M, Vazquez G, Bird GS, Putney JW (2003) The TRPC3/6/7 subfamily of cation channels. Cell Calcium 33:451–461

    Article  CAS  PubMed  Google Scholar 

  • Vandebrouck C, Martin D, Colson-Van Schoor M, Debaix H, Gailly P (2002) Involvement of TRPC in the abnormal calcium influx observed in dystrophic (mdx) mouse skeletal muscle fibers. J Cell Biol 158:1089–1096

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vannier B, Peyton M, Boulay G, Brown D, Qin N, Jiang M, Zhu X, Birnbaumer L (1999) Mouse trp2, the homologue of the human trpc2 pseudogene, encodes mTrp2, a store depletion-activated capacitative Ca2+ entry channel. Proc Natl Acad Sci U S A 96:2060–2064

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Venkatachalam K, Zheng F, Gill DL (2003) Regulation of canonical transient receptor potential (TRPC) channel function by diacylglycerol and protein kinase C. J Biol Chem 278:29031–29040

    Article  CAS  PubMed  Google Scholar 

  • Xu SZ, Beech DJ (2001) TrpC1 is a membrane-spanning subunit of store-operated Ca2+ channels in native vascular smooth muscle cells. Circ Res 88:84–87

    Article  CAS  PubMed  Google Scholar 

  • Xu XZ, Li HS, Guggino WB, Montell C (1997) Coassembly of TRP and TRPL produces a distinct store-operated conductance. Cell 89:1155–1164

    Article  CAS  PubMed  Google Scholar 

  • Xu SZ, Muraki K, Zeng F, Li J, Sukumar P, Shah S, Dedman AM, Flemming OK, McHugh D, Naylor J, Cheong A, Bateson AN, Munsch CM, Porter KLE, Beech DJ (2006) A sphingosine-1-phosphate-activated calcium channel controlling vascular smooth muscle activity. Circ Res 98:1381–1389

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu Y, Sweeney M, Zhang S, Platoshyn O, Landsberg J, Rothman A, Yuan JX (2003) PDGF stimulates pulmonary vascular smooth muscle cell proliferation by upregulating TRPC6 expression. Am J Physiol 284:C316–C330

    Article  CAS  Google Scholar 

  • Zitt C, Zobel A, Obukhov AG, Harteneck C, Kalkbrenner F, Lückhoff A, Schultz G (1996) Cloning and functional expression of a human Ca2+-permeable cation channel activated by calcium store depletion. Neuron 16:1189–1196

    Article  CAS  PubMed  Google Scholar 

TRPM Channels

  • Brauchi S, Orio P, Latorre R (2004) Clues to understanding cold sensation: thermodynamics and electrophysiological analysis of the cold receptor TRPM8. Proc Natl Acad Sci U S A 101:15494–15499

    Google Scholar 

  • Fonfrai E, Murdock PR, Cusdin FS, Benham CD, Kelsell RE, McNulty S (2006) Tissue distribution profiles of the human TRPM cation channel family. J Recept Signal Transduct Res 26:159–178

    Article  Google Scholar 

  • Hartzeneck C (2005) Function and pharmacology of TRPM cation channels. Naunyn-Schmiedebergs Arch Pharmacol 371:307–314

    Article  Google Scholar 

  • Hill K, McNuty S, Randall AD (2004a) Inhibition of TRPM2 channels by the antifungal agents clotrimazole and econazole. Naunyn-Schmiedebergs Arch Pharmacol 370:227–237

    Article  CAS  PubMed  Google Scholar 

  • Hill K, Benham CD, McNulty S, Randall AD (2004b) Flufenamic acid is a pH-dependent antagonist of TRPM2 channels. Neuropharmacology 47:450–460

    Article  CAS  PubMed  Google Scholar 

  • Hofmann T, Chubanov V, Gudermann T, Montell C (2003) TRPM5 is a voltage-modulated and Ca2+-activated monovalent selective cation channel. Curr Biol 13:1153–1158

    Article  CAS  PubMed  Google Scholar 

  • Kraft R, Grimm C, Frenzel H, Harteneck C (2006) Inhibition of TRPM2 cation channels by N-(p-amylcinnamoyl) anthranilic acid. Br J Pharmacol 148:264–273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Launay P, Fleig A, Perraud AL, Scharenberg AM, Penner R, Kinet JP (2002) TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell 109:397–407

    Article  CAS  PubMed  Google Scholar 

  • McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature (London) 416:52–58

    Article  CAS  Google Scholar 

  • Nagamine K, Kudoh J, Minoshima S, Kawasaki K, Asakawa S, Ito F, Shimizu N (1998) Molecular cloning of a novel putative Ca2+ channel protein (TRPC7) highly expressed in brain. Genomics 54:124–131

    Article  CAS  PubMed  Google Scholar 

  • Nilius B, Prenen J, Droogmans G, Voets T, Vennekens R, Freichel M, Wissenbach U, Flockerzi V (2003) Voltage dependence of the Ca2+-activated cation channel TRPM4. J Biol Chem 278:30813–30820

    Article  CAS  PubMed  Google Scholar 

  • Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S, Patapoutian A (2002) A TRP channel that senses cold stimuli and menthol. Cell 108:705–715

    Google Scholar 

  • Pérez CA, Margolskee RF, Kinnamon SC, Ogura T (2003) Making sense with TRP channels: store-operated calcium entry and the ion channel Trpm5 in taste receptor cells. Cell Calcium 33:541–549

    Article  PubMed  Google Scholar 

  • Perraud AL, Schmitz C, Scharenberg AM (2003) TRPM2 Ca2+ permeable cation channels. From gene to biological function. Cell Calcium 33:519–531

    Article  CAS  PubMed  Google Scholar 

  • Runnels LW, Yue L, Clapham DE (2002) The TRPM7 channel is inactivated by PIP2 hydrolysis. Nat Cell Biol 4:329–336

    CAS  PubMed  Google Scholar 

  • Schmitz C, Perraud AL, Johnson CO, Inabe K, Smith MK, Penner R, Kurosaki T, Fleig A, Scharenberg AM (2003) Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell 114:191–200

    Article  CAS  PubMed  Google Scholar 

  • Takezawa R, Schmitz C, Demeuse P, Scharenberg AM, Penner R, Fleig A (2004) Receptor-mediated regulation of the TPRM7 channel through its endogenous protein kinase domain. Proc Natl Acad Sci U S A 101:6009–6014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Voets T, Droogmans G, Wissenbach U, Janssens A, Flockerzi V, Nilius B (2004) The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature (London) 430:748–754

    Article  CAS  Google Scholar 

  • Xu XZ, Moebius F, Gill DL, Montell C (2001) Regulationn of melastatin, a TRP-realted protein, through interaction with a cytoplasmic isoform. Proc Natl Acad Sci U S A 98(19):10692–10697

    Article  PubMed Central  CAS  PubMed  Google Scholar 

TRPV Channels

  • Benham CD, Davis JB, Randall AD (2002) Vanilloid and TRP channels: a family of lipid-gated cation channels. Neuropharmacology 42:873–888

    Article  CAS  PubMed  Google Scholar 

  • Benham CD, Gunthorpe MJ, Davis JB (2003) TRPV channels as temperature sensors. Cell Calcium 33:479–487

    Article  CAS  PubMed  Google Scholar 

  • Bödding M, Flockerzi V (2004) Ca2+ dependence of the Ca2+- selective TRPV6 channel. J Biol Chem 279:36546–36552

    Article  PubMed  Google Scholar 

  • Brauchi S, Orio P, Latorre R (2004) Clues to understanding cold sensation: thermodynamics and electrophysiological analysis of the cold receptor TRPM8. Proc Natl Acad Sci U S A 101:15494–15499

    Google Scholar 

  • Caterina MJ, Julius D (2001) The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci 24:487–517

    Article  CAS  PubMed  Google Scholar 

  • Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heatactivated ion channel in the pain pathway. Nature (London) 389:816–824

    Article  CAS  Google Scholar 

  • Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D (1999) A capsaicin-receptor homologue with a high threshold for noxious heat. Nature (London) 398:436–441

    Article  CAS  Google Scholar 

  • Chung MK, Lee H, Mizuno A, Suzuki M, Caterina MJ (2004) 2-Aminoethoxydiphenyl borate activates and sensitizes the heat-gated ion channel TRPV3. J Neurosci 24:5177–5182

    Article  CAS  PubMed  Google Scholar 

  • Clapham DE (2003) TRP channels as cellular sensors. Nature (London) 426:517–524

    Google Scholar 

  • Den Dekker E, Hoenderop JGJ, Nilius B, Bindels RJM (2003) The epithelial calcium channels, TRPV5 & TRPV6: from identification towards regulation. Cell Calcium 33:497–507

    Article  Google Scholar 

  • Hirnet D, Olaussson J, Fecher-Trost C, Bödding M, Nastaincztyk W, Wissenbach U, Flockerzi V, Freichel M (2003) The TRPV6 gene, cDNA, and protein. Cell Calcium 33:509–518

    Article  CAS  PubMed  Google Scholar 

  • Hoenderop JG, Voets T, Hoefs S, Weidema F, Prenen J, Nilius B, Bidels RJ (2003) Homo- and heterotetrameric architecture of the epithelial Ca2+ channels TRPV5 and TRPV6. EMBO J 22:776–785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hoenderop JG, Nilius B, Bindels RJ (2005) Calcium absorption across epithelia. Physiol Rev 85:373–422

    Article  CAS  PubMed  Google Scholar 

  • Hu HZ, Gu Q, Wang C, Colton CK, Tang J, Kinoshita-Kawada M, Lee LY, Wood JD, Zhu MX (2004) 2-Aminoethoxydiphenyl borate is a common activator of TRPV1, TRPV2 and TRPV3. J Biol Chem 279:35741–35748

    Article  CAS  PubMed  Google Scholar 

  • Lambers TT, Weidema AF, Nilius B, Hoenderop JG, Bindels RJ (2004) Regulation of the mouse epithelial Ca2+ channel TRPV6 by the Ca2+-sensor calmodulin. J Biol Chem 279:28855–28861

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Cha SK, Sun TJ, Huang CL (2005) PIP2 activates TRPV5 and releases its inhibition by intracellular Mg2+. J Gen Physiol 126:439–451

    Google Scholar 

  • Liedtke W, Choe Y, Marti-Renom MA, Bell AM, Denis CS, Sali A, Hudspeth AJ, Friedman JM, Heller S (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103:525–535

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Montell C, Birnbaumer L, Flockerzi V, Bindels RJ, Bruford EA, Caterina MJ, Clapham DE, Harteneck C, Heller S, Julius D (2002) A unified nomenclature for the superfamily of TRP cation channels. Mol Cell 92:229–231

    Google Scholar 

  • Mutai M, Heller S (2003) Vertebrate and invertebrate TRPV-like mechanoreceptors. Cell Calcium 33:471–478

    Article  CAS  PubMed  Google Scholar 

  • Nilius B, Vennekens R, Prenen J, Hoenderop JG, Bindels RJ, Droogmans G (2000) Whole-cell and single channel monovalent cation currents through the novel rabbit epithelial Ca2+ channel ECaC. J Physiol (London) 527(Pt 2):239–248

    Article  CAS  Google Scholar 

  • Peier AM, Reeve AJ, Andersson DA, Moqrich A, Earley TJ, Hergarden AC, Story GM, Colley S, Hogenesch JB, McIntyre P, Bevan S, Patapoutian A (2002) A heat-sensitive TRP channel expressed in keratinocytes. Science 296:2046–2049

    Google Scholar 

  • Smith GD, Gunthorpe MJ, Kelsell RE, Hayes PD, Reilly P, Facer P, Wright JE, Jerman JC, Walhin JP, Ooi L et al (2002) TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature (London) 418:186–190

    Article  CAS  Google Scholar 

  • Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD (2000) OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2:695–702

    Article  CAS  PubMed  Google Scholar 

  • Vennekens R, Hoenderop GJ, Prenen J, Stuiver M, Willems PHGM, Droogmans G, Nilius B, Bindels RJM (2000) Permeation and gating properties of the novel epithelial Ca2+ channel. J Biol Chem 275:3963–3969

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Ramsey I, Kotecha SA, Moran M, Chong JA, Lawson D, Ge P, Lilly J, Silos-Santiago I, Xie Y et al (2002) TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature (London) 418:181–186

    Article  CAS  Google Scholar 

  • Yue L, Peng JB, Hediger MA, Clapham DE (2001) CaT1 manifests the pore properties of the calcium-release-activated calcium channel. Nature (London) 410:705–709

    Article  CAS  Google Scholar 

TRPV1 Receptor Assay

  • Gunthorpe MJ, Benham CD, Randall A, Davis JB (2002) The diversity in the vanilloid (TRPV) receptor family of ion channels. Trends Pharmacol Sci 23:191

    Article  Google Scholar 

  • Gunthorpe MJ, Rami HK, Jerman JC, Smart D, Gill CH, Soffin EM, Hanna SL, Lappin SC, Egerton J, Smith GD, Worby A, Howett L, Owen D, Nasir S, Davies CH, Thompson M, Wyman PA, Randall AD, Davis JB (2004) Identification and characterization of SB-366971, a potent and selective vanilloid receptor (VR1/TRPV1) antagonist. Neuropharmacology 46:133–149

    Article  CAS  PubMed  Google Scholar 

  • Rao GK, Kaminski NE (2006) Induction of intracellular elevation by Δ9-tetrahydrocannabinol in T cells involves TRPC1 channels. J Leukoc Biol 79:202–213

    Google Scholar 

  • Skaper SD, Facci L, Milani D, Leon A, Toffano G (1990) Culture and use of primary and clonal neural cells. In: Conn PM (ed) Methods in neurosciences, vol 2. Academic, New York, pp 17–33

    Google Scholar 

  • Smart D, Gunthorpe MJ, Jerman JC, Nasir S, Gray J, Muir AI, Chambers JK, Randall AD, Davus JB (2000) The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1). Br J Pharmacol 129:227–230

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smart D, Jerman JC, Gunthorpe MJ, Brough SJ, Ranson J, Cairns W, Hayes PD, Randall AD, Davis JH (2001) Characterisation using PLIPR of human vanilloid receptor pharmacology. Eur J Pharmacol 417:51–58

    Article  CAS  PubMed  Google Scholar 

  • Sullivan E, Tucker EM, Dale IL (1999) Measurement of [Ca2+]i, usuing the fluorometric imaging plate reader (FLIPR). In: Lambert DG (ed) Calcium signaling protocols. Humana Press, New Jersey, pp 125–136

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liomar A. A. Neves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Neves, L.A.A., Tiniakova, O. (2016). Different Channels. In: Hock, F. (eds) Drug Discovery and Evaluation: Pharmacological Assays. Springer, Cham. https://doi.org/10.1007/978-3-319-05392-9_148

Download citation

Publish with us

Policies and ethics