Skip to main content
Log in

Cerebral Organoids: A Model of Brain Development

  • REVIEWS
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

The development of the human brain in normal or pathological conditions is currently infeasible to fully reproduce in animal models, warranting a search for alternative solutions. Significant progress has recently been achieved in the development of methods to culture human cerebral organoids. Cerebral organoids are 3D cultures wherein brain-specific cell types develop from embryonic or induced pluripotent stem cells. As a result of the self-organization of nervous tissue, unique features of human brain development are reproduced in cerebral organoids, while being absent from the developing rodent brain. However, organoids do not exactly copy the brain, and a number of restrictions should be overcome to expand the opportunities to study the development and disorders of the human brain with their use in the future. It is clear that the modeling of cerebral organoids has already opened up prospects for both basic and clinical research. The review discusses the methods to culture nervous tissue, the means to produce cerebral organoids, the features of their self-organization, and the modeling of normal developmental processes and brain pathology with cerebral organoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Aasen, D.M. and Vergara, M.N., New drug discovery paradigms for retinal diseases: a focus on retinal organoids, J. Ocul. Pharmacol. Ther., 2020, vol. 36, no. 1, pp. 18–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aleksandrova, M.A., Podgornyi, O.V., Poltavtseva, R.A., et al., Structure and cell composition of spheres cultured from human fetal retina, Bull. Exp. Biol. Med., 2006, vol. 142, no. 1, p. 9.

    Article  Google Scholar 

  3. Altman, J., Autoradiographic and histological studies of postnatal neurogenesis. 3. Dating the time of production and onset of differentiation of cerebellar microneurons in rats, J. Comp. Neurol., 1969, vol. 136, no. 3, pp. 269–293.

    Article  CAS  PubMed  Google Scholar 

  4. Altman, J. and Das, G.D., Post-natal origin of microneurones in the rat brain, Nature, 1965, vol. 207, no. 5000, pp. 953–956.

    Article  CAS  PubMed  Google Scholar 

  5. Anderson, S.A., Marín, O., Horn, C., et al., Distinct cortical migrations from the medial and lateral ganglionic eminences, Development, 2001, vol. 128, pp. 353–363.

    Article  CAS  PubMed  Google Scholar 

  6. Avior, Y., Sagi, I., and Benvenisty, N., Pluripotent stem cells in disease modelling and drug discovery, Nat. Rev. Mol. Cell. Biol., 2016, vol. 17, no. 3, pp. 10–82.

    Article  CAS  Google Scholar 

  7. Bagley, J.A., Reumann, D., Bian, S., et al., Fused cerebral organoids model interactions between brain regions, Nat. Methods, 2017, vol. 14, no. 7, pp. 743–751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barber, M. and Pierani, A., Tangential migration of glutamatergic neurons and cortical patterning during development: lessons from Cajal–Retzius cells, Dev. Neurobiol., 2016, vol. 76, no. 8, pp. 847–881.

    Article  CAS  PubMed  Google Scholar 

  9. Bejoy, J., Yuan, X., Song, L., et al., Genomics analysis of metabolic pathways of human stem cell-derived microglia-like cells and the integrated cortical spheroids, Stem. Cells. Int., 2019, vol. 18. 2382534.

    Google Scholar 

  10. Bershteyn, M. and Kriegstein, A.R., Cerebral organoids in a dish: progress and prospects, Cell, 2013, vol. 155, no. 1, pp. 19–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bershteyn, M., Nowakowski, T.J., Pollen, A.A., et al., Human iPSC-derived cerebral organoids model cellular features of lissencephaly and reveal prolonged mitosis of outer radial glia, Cell Stem. Cell, 2017, vol. 20, no. 4, pp. 435–449. e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bertacchi, M., Pandolfini, L., D’Onofrio, M., et al., The double inhibition of endogenously produced BMP and Wnt factors synergistically triggers dorsal telencephalic differentiation of mouse ES cells, Dev. Neurobiol., 2015, vol. 75, no. 1, pp. 66–79.

    Article  CAS  PubMed  Google Scholar 

  13. Birey, F., Andersen, J., Makinson, C.D., et al., Assembly of functionally integrated human forebrain spheroids, Nature, 2017, vol. 545, no. 7652, pp. 54–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Camp, J.G., Badsha, F., Florio, M., et al., Human cerebral organoids recapitulate gene expression programs of fetal neocortex development, Proc. Natl. Acad. Sci. U. S. A., 2015, vol. 112, no. 51, pp. 15672–15677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Campbell, K. and Gotz, M., Radial glia: multi-purpose cells for vertebrate brain development, Trends Neurosci., 2002, vol. 25, no. 5, pp. 235–238.

    Article  CAS  PubMed  Google Scholar 

  16. Carpenter, M.K., Cui, X., Hu, Z.Y., et al., In vitro expansion of a multipotent population of human neural progenitor cells, Exp. Neurol., 1999, vol. 158, no. 2, pp. 265–278.

    Article  CAS  PubMed  Google Scholar 

  17. Cavanaugh, M.W., Neuron development from trypsin-dissociated cells of differentiated spinal cord of the chick embryo, Exp. Cell Res., 1955, vol. 9, no. 1, pp. 42–48.

    Article  CAS  PubMed  Google Scholar 

  18. Chambers, S.M., Fasano, C.A., Papapetrou, E.P., et al., Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling, Nat. Biotechnol., 2009, vol. 27, no. 3, pp. 275–280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chambers, J.M., McKee, R.A., Drummond, B.E., et al., Evolving technology: creating kidney organoids from stem cells, AIMS Bioeng., 2016, vol. 3, no. 3, pp. 305–318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen, H.I., Song, H., and Ming, G.L., Applications of human brain organoids to clinical problems, Dev. Dyn., 2019, vol. 248, no. 1, pp. 53–64.

    Article  PubMed  Google Scholar 

  21. Chhibber, T., Bagchi, S., Lahooti, B., et al., CNS organoids: an innovative tool for neurological disease modeling and drug neurotoxicity screening, Drug. Discov. Today, 2020, vol. 25, no. 2, pp. 456–465.

    Article  CAS  PubMed  Google Scholar 

  22. Chichagova, V., Dorgau, B., Felemban, M., et al., Differentiation of retinal organoids from human pluripotent stem cells, Curr. Protoc. Stem. Cell. Biol., 2019, vol. 50, no. 1. e95.

    PubMed  Google Scholar 

  23. Cullen, D.K., Gordian-Velez, W.J., Struzyna, L.A., et al., Bundled three-dimensional human axon tracts derived from brain organoids, iScience, 2019, no. 21, pp. 57–67.

  24. Curchoe, C.L., Russo, J., and Terskikh, A.V., hESC derived neuro-epithelial rosettes recapitulate early mammalian neurulation events; an in vitro model, Stem. Cell. Res., 2012, vol. 8, no. 2, pp. 239–246.

    Article  CAS  PubMed  Google Scholar 

  25. Dakic, V., Minardi Nascimento, J., Costa Sartore, R., et al., Short term changes in the proteome of human cerebral organoids induced by 5-MeO-DMT, Sci. Rep., 2017, vol. 7, no. 1, p. 12863.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Dang, J., Tiwari, S.K., Agrawal, K., et al., Glial cell diversity and methamphetamine-induced neuroinflammation in human cerebral organoids. Mol. Psychiatry, 2020. https://doi.org/10.1038/s41380-020-0676-x

  27. Daviaud, N., Friedel, R.H., and Zou, H., Vascularization and engraftment of transplanted human cerebral organoids in mouse cortex, eNeuro, 2018, vol. 5, no. 6. pii: ENEURO.0219-18.2018

  28. Driggers, R.W., Ho, C.Y., Korhonen, E.M., et al., Zika virus infection with prolonged maternal viremia and fetal brain abnormalities, N. Engl. J. Med., 2016, vol. 374, no. 22, pp. 2142–2151.

    Article  CAS  PubMed  Google Scholar 

  29. Durens, M., Nestor, J., Williams, M., et al., High-throughput screening of human induced pluripotent stem cell-derived brain organoids, J. Neurosci. Methods, 2020, p. 108627.

  30. Edri, R., Yaffe, Y., Ziller, M.J., et al., Analysing human neural stem cell ontogeny by consecutive isolation of notch active neural progenitors, Nat. Commun., 2015, vol. 6, p. 6500.

    Article  CAS  PubMed  Google Scholar 

  31. Eiraku, M., Watanabe, K., Matsuo-Takasaki, M., et al., Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals, Cell. Stem. Cell, 2008, vol. 3, no. 5, pp. 519–532.

    Article  CAS  PubMed  Google Scholar 

  32. Eiraku, M., Takata, N., Ishibashi, H., et al., Self-organizing optic-cup morphogenesis in three-dimensional culture, Nature, 2011, vol. 472, no. 7341, pp. 51–56.

    Article  CAS  PubMed  Google Scholar 

  33. Elkabetz, Y. and Studer, L., Human esc-derived neural rosettes and neural stem cell progression, Cold. Spring. Harb. Symp. Quant. Biol., 2008, no. 73, pp. 377–387.

  34. Eremeev, A.V., Volovikov, E.A., Shuvalova, L.D., et al., “Necessity is the mother of invention” or inexpensive, reliable, and reproducible protocol for generating organoids, Biochemistry (Moscow), 2019, vol. 84, no. 3, pp. 321–328.

    CAS  PubMed  Google Scholar 

  35. Evans, M.J. and Kaufman, M.H., Establishment in culture of pluripotential cells from mouse embryos, Nature, 1981, vol. 292, no. 5819, pp. 154–156.

    Article  CAS  PubMed  Google Scholar 

  36. Faravelli, I., Costamagna, G., Tamanini, S., et al., Back to the origins: human brain organoids to investigate neurodegeneration, Brain Res., 2020, no. 1727, p. 146561.

  37. Faustino Martins, J.M., Fischer, C., Urzi, A., et al., Self-organizing 3D human trunk neuromuscular organoids, Cell. Stem. Cell, 2020, vol. 26, no. 2, pp. 172–186.

    Article  CAS  Google Scholar 

  38. Fietz, S.A. and Huttner, W.B., Cortical progenitor expansion, self-renewal and neurogenesis-a polarized perspective, Curr. Opin. Neurobiol., 2011, vol. 21, no. 1, pp. 23–35.

    Article  CAS  PubMed  Google Scholar 

  39. Florio, M., Albert, M., Taverna, E., et al., Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion, Science, 2015, no. 347, p. 470.

  40. Florio, M., Heide, M., Pinson, A., et al., Evolution and cell-type specificity of human-specific genes preferentially expressed in progenitors of fetal neocortex, Elife, 2018, vol. 7. pii: e32332.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gerrard, L., Rodgers, L., and Cui, W., Differentiation human embryonic stem cells to neural lineages in adherent culture by blocking bone morphogenetic protein signaling, Stem Cells, 2005, vol. 23, no. 9, pp. 1234–1241.

    Article  CAS  PubMed  Google Scholar 

  42. Giandomenico, S.L. and Lancaster, M.A., Probing human brain evolution and development in organoids, Curr. Opin. Cell. Biol., 2017, vol. 44, pp. 36–43.

    Article  CAS  PubMed  Google Scholar 

  43. Gonzalez, C., Armijo, E., Bravo-Alegria, J., et al., Modeling amyloid beta and tau pathology in human cerebral organoids, Mol. Psychiatry, 2018, vol. 23, no. 12, pp. 2363–2374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ham, O., Jin, Y.B., Kim, J., et al., Blood vessel formation in cerebral organoids formed from human embryonic stem cells, Biochem. Biophys. Res. Commun., 2020, vol. 521, no. 1, pp. 84–90.

    Article  CAS  PubMed  Google Scholar 

  45. Hansen, D.V., Lui, J.H., Parker, P.R., et al., Neurogenic radial glia in the outer subventricular zone of human neocortex, Nature, 2010, vol. 464, no. 7288, pp. 554–561.

    Article  CAS  PubMed  Google Scholar 

  46. Harbuzariu, A., Pitts, S., Cespedes, J.C., et al., Modelling heme-mediated brain injury associated with cerebral malaria in human brain cortical organoids, Sci. Rep., 2019, vol. 9, no. 1, p. 19162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Harding, A., Cortez-Toledo, E., Magner, N.L., et al., Highly efficient differentiation of endothelial cells from pluripotent stem cells requires the MAPK and the PI3K pathways, Stem Cells, 2017, vol. 35, no. 4, pp. 909–919.

    Article  CAS  PubMed  Google Scholar 

  48. Harrison, R.G., Observations of the living developing nerve fiber, Anat. Rec., 1907, vol. 1, no. 5, pp. 116–128.

  49. He, Z., Han, D., Efimova, O., et al., Comprehensive transcriptome analysis of neocortical layers in humans, chimpanzees and macaques, Nat. Neurosci., 2017, vol. 20, no. 6, pp. 886–895.

    Article  CAS  PubMed  Google Scholar 

  50. Heide, M., Huttner, W.B., and Mora-Bermúdez, F., Brain organoids as models to study human neocortex development and evolution, Curr. Opin. Cell. Biol., 2018, no. 55, pp. 8–16.

  51. Hogue, M.J., Tissue cultures of the brain; intercellular granules, J. Comp. Neurol., 1946, vol. 85, no. 3, pp. 519–530.

    Article  CAS  PubMed  Google Scholar 

  52. Homem, C.C., Repic, M., and Knoblich, J.A., Proliferation control in neural stem and progenitor cells, Nat. Rev. Neurosci., 2015, vol. 16, no. 11, pp. 647–659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hong, Y.J. and Do, J.T., Neural lineage differentiation from pluripotent stem cells to mimic human brain tissues, Front. Bioeng. Biotechnol., 2019, vol. 7, p. 400.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hyun, I., Scharf-Deering, J.C., and Lunshof, J.E., Ethical issues related to brain organoid research, Brain Res., 2020, p. 146653.

  55. Itsykson, P., Ilouz, N., Turetsky, T., et al., Derivation of neural precursors from human embryonic stem cells in the presence of noggin, Mol. Cell. Neurosci., 2005, vol. 30, pp. 24–36.

    Article  CAS  PubMed  Google Scholar 

  56. Jo, J., Xiao, Y., Sun, A.X., et al., Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons, Cell. Stem. Cell, 2016, vol. 19, no. 2, pp. 248–257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kadoshima, T., Sakaguchi, H., Nakano, T., et al., Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human es cell-derived neocortex, Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, no. 50, pp. 20284–20289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kanton, S., Boyle, M.J., He, Z., et al., Organoid single-cell genomic atlas uncovers human-specific features of brain development, Nature, 2019, vol. 574, no. 7778, pp. 418–422.

    Article  CAS  PubMed  Google Scholar 

  59. Knight, G.T., Lundin, B.F., Iyer, N., et al., Engineering induction of singular neural rosette emergence within hPSC-derived tissues, Elife, 2018, vol. 7, pii: e37549.

  60. Koo, B., Choi, B., Park, H., et al., Past, present, and future of brain organoid technology, Mol. Cells, 2019, vol. 42, no. 9, pp. 617–627.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Lancaster, M.A., Renner, M., Martin, C.A., et al., Cerebral organoids model human brain development and microcephaly, Nature, 2013, vol. 501, no. 7467, pp. 373–379.

    Article  CAS  PubMed  Google Scholar 

  62. Lancaster, M.A. and Knoblich, J.A., Generation of cerebral organoids from human pluripotent stem cells, Nat. Protoc., 2014, vol. 9, no. 10, pp. 2329–2340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lancaster, M.A., Corsini, N.S., Wolfinger, S., et al., Guided self-organization and cortical plate formation in human brain organoids, Nat. Biotechnol., 2017, vol. 35, no. 7, pp. 659–666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lehtinen, M.K., Zappaterra, M.W., Chen, X., et al., The cerebrospinal fluid provides a proliferative niche for neural progenitor cells, Neuron, 2011, vol. 69, no. 5, pp. 893–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lui, J.H., Hansen, D.V., and Kriegstein, A.R., Development and evolution of the human neocortex, Cell, 2011, vol. 146, no. 1, pp. 18–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Luo, C., Lancaster, M.A., Castanon, R., et al., Cerebral organoids recapitulate epigenomic signatures of the human fetal brain, Cell Rep., 2016, vol. 17, no. 12, pp. 3369–3384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mak, I.W., Evaniew, N., and Ghert, M., Lost in translation: animal models and clinical trials in cancer treatment, Am. J. Transl. Res., 2014, vol. 6, pp. 114–118.

    PubMed  PubMed Central  Google Scholar 

  68. Mansour, A.A.F., Goncalves, J.T., Bloyd, C.W., et al., An in vivo model of functional and vascularized human brain organoids, Nat. Biotechnol., 2018, vol. 36, pp. 432–441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mariani, J., Simonini, M.V., Palejev, D., et al., Modeling human cortical development in vitro using induced pluripotent stem cells, Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, no. 31, pp. 12770–12775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Marotta, N., Kim, S., and Krainc, D., Organoid and pluripotent stem cells in parkinson’s disease modeling: an expert view on their value to drug discovery, Expert Opin. Drug. Discov., 2020, pp. 1–15.

  71. Marshall, J.J. and Mason, J.O., Mouse vs man: organoid models of brain development & disease, Brain Res., 2019, vol. 1724, p. 146427.

  72. Marton, R.M. and Paşca, S.P., Neural differentiation in the third dimension: generating a human midbrain, Cell. Stem Cell, 2016, vol. 19, no. 2, pp. 145–146.

    Article  CAS  PubMed  Google Scholar 

  73. Megraw, T.L., Sharkey, J.T., and Nowakowski, R.S., Cdk5rap2 exposes the centrosomal root of microcephaly syndromes, Trends Cell Biol., 2011, vol. 21, no. 8, pp. 470–480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Miller, J.D., Ganat, Y.M., Kishinevsky, S., et al., Human iPSC-based modeling of late-onset disease via progerin-induced aging, Cell. Stem. Cell, 2013, vol. 13, no. 6, pp. 691–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mlakar, J., Korva, M., Tul, N., et al., Zika virus associated with microcephaly, N. Engl. J. Med., 2016, vol. 374, no. 10, pp. 951–958.

    Article  CAS  PubMed  Google Scholar 

  76. Monzel, A.S., Smits, L.M., Hemmer, K., et al., Derivation of human midbrain-specific organoids from neuroepithelial stem cells, Stem Cell. Rep., 2017, vol. 8, no. 5, pp. 1144–1154.

    Article  CAS  Google Scholar 

  77. Moscona, A., Effect of temperature on adhesion to glass and histogenetic cohesion of dissociated cells, Nature, 1961, vol. 190, pp. 408–409.

    Article  CAS  PubMed  Google Scholar 

  78. Mostajo-Radji, M.A., Schmitz, M.T., Montoya, S.T., et al., Reverse engineering human brain evolution using organoid models, Brain Res., 2019, no. 1729, p. 146582.

  79. Muñoz-Sanjuán, I. and Brivanlou, A.H., Neural induction, the default model and embryonic stem cells, Nat. Rev. Neurosci., 2002, vol. 3, pp. 271–280.

    Article  PubMed  CAS  Google Scholar 

  80. Muotri, A.R., Brain organoids and insights on human evolution, F1000Res, 2019, vol. 8. pii: F1000. Faculty Rev-760.

  81. Nascimento, J.M., Saia-Cereda, V.M., Sartore, R.C., et al., Human cerebral organoids and fetal brain tissue share proteomic similarities, Front. Cell. Dev. Biol., 2019, vol. 7, p. 303.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Nowakowski, T.J., Rani, N., Golkaram, M., et al., Regulation of cell-type-specific transcriptomes by microRNA networks during human brain development, Nat. Neurosci., 2018, vol. 21, no. 12, pp. 1784–1792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nzou, G., Wicks, R.T., Wicks, E.E., et al., Human cortex spheroid with a functional blood brain barrier for high-throughput neurotoxicity screening and disease modeling, Sci. Rep., 2018, vol. 8, no. 1, p. 7413.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Oberheim, N.A., Takano, T., Han, X., et al., Uniquely hominid features of adult human astrocytes, J. Neurosci., 2009, vol. 29, no. 10, pp. 3276–3287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ormel, P.R., Vieira de Sá, R., van Bodegraven, E.J., et al., Мicroglia innately develop within cerebral organoids, Nat. Commun., 2018, vol. 9, no. 1, p. 4167.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Otani, T., Marchetto, M.C., Gage, F.H., et al., 2D and 3D stem cell models of primate cortical development identify species-specific differences in progenitor behavior contributing to brain size, Cell. Stem Cell, 2016, vol. 18, no. 4, pp. 467–480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pacitti, D., Privolizzi, R., and Bax, B.E., Organs to cells and cells to organoids: the evolution of in vitro central nervous system modelling, Front. Cell. Neurosci., 2019, vol. 13, p. 129.

  88. Pamies, D., Hartung, T., and Hogberg, H.T., Biological and medical applications of a brain-on-a-chip, Exp. Biol. Med. (Maywood), 2014, vol. 239, no. 9, pp. 1096–1107.

    Article  CAS  Google Scholar 

  89. Paşca, A.M., Sloan, S.A., Clarke, L.E., et al., Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture, Nat. Methods, 2015, vol. 12, no. 7, pp. 671–678.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Perrin, S., Preclinical research: make mouse studies work, Nature, 2014, vol. 507, pp. 423–425.

    Article  PubMed  Google Scholar 

  91. Pham, M.T., Pollock, K.M., Rose, M.D., et al., Generation of human vascularized brain organoids, Neuroreport, 2018, vol. 29, no. 7, pp. 588–593.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Podgornyi, O.V., Poltavtseva, R.A., Marei, M.V., et al., Formation of neuroepithelial structures in culture of neural stem cells from human brain, Bull. Exp. Biol. Med., 2005, vol. 140, no. 1, pp. 113–117.

    Article  CAS  PubMed  Google Scholar 

  93. Pollen, A.A., Nowakowski, T.J., Chen, J., et al., Molecular identity of human outer radial glia during cortical development, Cell, 2015, vol. 163, no. 1, pp. 55–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pollen, A.A., Bhaduri, A., Andrews, M.G., et al., Establishing cerebral organoids as models of human-specific brain evolution, Cell, 2019, vol. 176, no. 4, pp. 743–756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pothayee, N., Maric, D., Sharer, K., et al., Neural precursor cells form integrated brain-like tissue when implanted into rat cerebrospinal fluid, Commun. Biol., 2018, no. 1, p. 114.

  96. Prodromidou, K. and Matsas, R., Species-specific miRNAs in human brain development and disease, Front. Cell. Neurosci., 2019, vol. 13, p. 559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Qian, X., Nguyen, H.N., Song, M.M., et al., Brain-region-specific organoids using mini-bioreactors for modeling zikv exposure, Cell, 2016, vol. 165, no. 5, pp. 1238–1254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Qian, X., Nguyen, H.N., Jacob, F., et al., Using brain organoids to understand zika virus-induced microcephaly, Development, 2017, vol. 144, no. 6, pp. 952–957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Qian, X., Jacob, F., Song, M.M., et al., Generation of human brain region-specific organoids using a miniaturized spinning bioreactor, Nat. Protoc., 2018, vol. 13, no. 3, pp. 565–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Qian, X., Song, H., and Ming, G.L., Brain organoids: advances, applications and challenges, Development, 2019, vol. 146, no. 8, pii: dev166074.

  101. Quadrato, G., Nguyen, T., Macosko, E.Z., et al., Cell diversity and network dynamics in photosensitive human brain organoids, Nature, 2017, vol. 545, no. 7652, pp. 48–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Raja, W.K., Mungenast, A.E., Lin, Y.T., et al., Self-organizing 3D human neural tissue derived from induced pluripotent stem cells recapitulate Alzheimer’s disease phenotypes, PLoS One, 2016, vol. 11, no. 9. e0161969.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Ranga, A., Girgin, M., Meinhardt, A., et al., Neural tube morphogenesis in synthetic 3D microenvironments, Proc. Natl. Acad. Sci. U. S. A., 2016, vol. 113, no. 44, pp. E6831–E6839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Reynolds, B.A. and Weiss, S., Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell, Dev. Biol., 1996, vol. 175, no. 1, pp. 1–13.

    Article  CAS  PubMed  Google Scholar 

  105. Sakaguchi, H., Kadoshima, T., Soen, M., et al., Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telencephalic tissue, Nat. Commun., 2015, vol. 6, no. 8896.

  106. Sasai, Y., Next-generation regenerative medicine: organogenesis from stem cells in 3D culture, Cell. Stem Cell, 2013, vol. 12, no. 5, pp. 520–530.

    Article  CAS  PubMed  Google Scholar 

  107. Seo, J., Kritskiy, O., Watson, L.A., et al., Inhibition of p25/Cdk5 attenuates tauopathy in mouse and iPSC models of frontotemporal dementia, J. Neurosci., 2017, vol. 37, no. 4, pp. 9917–9924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Shen, Q., Goderie, S.K., Jin, L., et al., Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells, Science, 2004, vol. 304, no. 5675, pp. 1338–1340.

    Article  CAS  PubMed  Google Scholar 

  109. Simian, M. and Bissell, M.J., Organoids: a historical perspective of thinking in three dimensions, J. Cell Biol., 2017, vol. 216, no. 1, pp. 31–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sloan, S.A., Darmanis, S., Huber, N., Khan, T.A., et al., Human astrocyte maturation captured in 3D cerebral cortical spheroids derived from pluripotent stem cells, Neuron, 2017, vol. 95, no. 4, pp. 779–790. e6.

  111. Smukler, S.R., Runciman, S.B., Xu, S., et al., Embryonic stem cells assume a primitive neural stem cell fate in the absence of extrinsic influences, J. Cell Biol., 2006, vol. 172, pp. 79–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sousa, A.M.M., Meyer, K.A., Santpere, G., et al., Evolution of the human nervous system function, structure, and development, Cell, 2017, vol. 170, pp. 226–247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sun, A.X., Ng, H.H., and Tan, E.K., Translational potential of human brain organoids, Ann. Clin. Transl. Neurol., 2018, vol. 5, no. 2, pp. 226–235.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Takahashi, K., Tanabe, K., Ohnuki, M., et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors, Cell, 2007, vol. 131, no. 5, pp. 861–872.

    Article  CAS  PubMed  Google Scholar 

  115. Taverna, E., Gotz, M., and Huttner, W.B., The cell biology of neurogenesis: toward an understanding of the development and evolution of the neocortex, Annu. Rev. Cell. Dev. Biol., 2014, vol. 30, pp. 465–502.

    Article  CAS  PubMed  Google Scholar 

  116. Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., et al., Embryonic stem cell lines derived from human blastocysts, Science, 1998, vol. 282, no. 5391, pp. 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  117. Todd, G.K., Boosalis, C.A., Burzycki, A.A., et al., Towards neuronal organoids: a method for long-term culturing of high-density hippocampal neurons, PLoS One, 2013, vol. 8, no. 4. e58996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Trevino, A.E., Sinnott-Armstrong, N., Andersen, J., et al., Chromatin accessibility dynamics in a model of human forebrain development, Science, 2020, vol. 367, no. 6476. pii: eaay164.

    Article  CAS  Google Scholar 

  119. Tropepe, V., Hitoshi, S., Sirard, C., et al., Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism, Neuron, 2001, vol. 30, pp. 65–78.

    Article  CAS  PubMed  Google Scholar 

  120. Vescovi, A.L., Parati, E.A., Gritti, A., et al., Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation, Exp. Neurol., 1999, vol. 156, no. 1, pp. 71–83.

    Article  CAS  PubMed  Google Scholar 

  121. Wang, S.N., Wang, Z., Xu, T.Y., et al., Cerebral organoids repair ischemic stroke brain injury, Transl. Stroke Res., 2019.

  122. Watanabe, K., Kamiya, D., Nishiyama, A., et al., Directed differentiation of telencephalic precursors from embryonic stem cells, Nat. Neurosci., 2005, vol. 8, no. 3, pp. 288–296.

    Article  CAS  PubMed  Google Scholar 

  123. Winanto Khong, Z.J., Hor, J.H., et al., Spinal cord organoids add an extra dimension to traditional motor neuron cultures, Neural. Regen. Res., 2019, vol. 14, no. 9, pp. 1515–1516.

    Article  PubMed  Google Scholar 

  124. Xiang, Y., Tanaka, Y., Patterson, B., et al., Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration, Cell Stem Cell, 2017, vol. 21, no. 3, pp. 383–398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Xu, R., Brawner, A.T., Li, S., Liu, J.J., et al., OLIG2 drives abnormal neurodevelopmental phenotypes in human iPSC-based organoid and chimeric mouse models of down syndrome, Cell Stem Cell, 2019, vol. 24, no. 6, pp. 908–926. е8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yakoub, A.M., Cerebral organoids exhibit mature neurons and astrocytes and recapitulate electrophysiological activity of the human brain, Neural Regen. Res., 2019, vol. 14, no. 5, pp. 757–761.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Yakoub, A.M. and Sadek, M., Development and characterization of human cerebral organoids: an optimized protocol, Cell Transplant., 2018, vol. 27, no. 3, pp. 393–406.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Yakoub, A.M. and Sadek, M., Analysis of synapses in cerebral organoids, Cell Transplant., 2019, vol. 28, nos. 9–10, pp. 1173–1182.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Yin, X., Mead, B.E., Safaee, H., et al., Engineering stem cell organoids, Cell Stem Cell, 2016, vol. 18, no. 1, pp. 25–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ying, Q.L., Stavridis, M., Griffiths, D., et al., Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture, Nat. Biotechnol., 2003, vol. 21, no. 2, pp. 183–186.

    Article  CAS  PubMed  Google Scholar 

  131. Zhang, S.C., Wernig, M., Duncan, I.D., et al., In vitro differentiation of transplantable neural precursors from human embryonic stem cells, Nat. Biotechnol., 2001, vol. 19, pp. 1129–1133.

    Article  CAS  PubMed  Google Scholar 

  132. Ziller, M.J., Edri, R., Yaffe, Y., et al., Dissecting neural differentiation regulatory networks through epigenetic footprinting, Nature, 2015, vol. 518, no. 7539, pp. 355–359.

    Article  CAS  PubMed  Google Scholar 

  133. Ziv, O., Zaritsky, A., Yaffe, Y., et al., Quantitative live imaging of human embryonic stem cell derived neural rosettes reveals structure-function dynamics coupled to cortical development, PLoS. Comput. Biol., 2015, vol. 11, no. 10. e1004453.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to our colleagues for helpful discussions and advice.

Funding

This work was supported by the Russian Science Foundation (project no. 19-74-00117).

Author information

Authors and Affiliations

Authors

Contributions

The authors equally contributed to the review.

Corresponding author

Correspondence to K. K. Sukhinich.

Ethics declarations

The authors declare that they have no conflict of interest. This review does not contain any studies involving animals or human subjects performed by any of the authors.

Additional information

Translated by T. Tkacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukhinich, K.K., Aleksandrova, M.A. Cerebral Organoids: A Model of Brain Development. Russ J Dev Biol 51, 231–245 (2020). https://doi.org/10.1134/S1062360420040074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360420040074

Keywords:

Navigation