Skip to main content
Log in

Trachylina: The Group That Remains Enigmatic Despite 150 Years of Investigations

  • Reviews
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

Trachylina is a group of cnidarians, a subclass of Hydrozoa. Despite the low species diversity of this group, its representatives are characterized by diversity of life cycles. Trachylina have populated various environments, from deep ocean to fresh water ecosystems. Polyps of Trachylina are either very small or absent in the life cycle, which distinguishes this group from the majority of other Hydrozoa. Trachylina are also highly diverse and have a number of features that are unusual for cnidarians. A number of representatives of this group are characterized by a small number of cells at the embryonic and larval stages. This phenomenon is well known for the representatives of phylogenetically distant taxa—Nematoda and Chordata (Tunicata). In addition, the development of Trachylina is characterized by a number of evolutionary changes that, apparently, make it possible to accelerate the formation of the definitive stage (medusa). Paradoxically, there is no one species among the representatives of this group that is studied in more or less detail. The purpose of our review is to summarize the scanty information on the Trachylina ontogeny and to demonstrate the importance of studying the ontogeny of this group for understanding the general rules of the evolution of development and life cycles of Metazoa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beklemishev, V.N., Osnovy sravnitel’noi anatomii bespozvonochnykh (Principles of Comparative Anatomy of Invertebrates), Moscow: Nauka, 1964, vol. 1.

  • Berná, L., D’Onofrio, G., and Alvarez-Valin, F., Peculiar patterns of amino acid substitution and conservation in the fast evolving tunicate Oikopleura dioica, Mol. Phylogenet. Evol., 2012, vol. 62, pp. 708–717.

    Article  PubMed  CAS  Google Scholar 

  • Bigelow, H.B., Reports on the scientific results of the expedition to the tropical pacific. XVI: the medusae, Mem. Mus. Comp. Zool. Harvard, 1909, vol. 37, pp. 1–243.

    Google Scholar 

  • Bouillon, J., Considerations sur le developpement des narcomeduses et sur leur position phylogenetique, Indo-Malay Zool., 1987, vol. 4, pp. 189–278.

    Google Scholar 

  • Bouillon, J., Boero, F., Cicogna, F., et al., Non-siphonophoran Hydrozoa: what are we talking about?, Scient. Mar., 1992, vol. 56, nos. 2–3, pp. 279–284.

    Google Scholar 

  • Brooks, W.K., The life-history of the hydromedusae: a discussion of the origin of the medusae, and of the significance of metagenesis, Mem. Boston: Soc. Nat. Hist., 1886, vol. 3, pp. 359–430.

    Google Scholar 

  • Buss, L.W., Bryozoan overgrowth interactions—the interdependence of competition for space and food, Nature, 1979, vol. 281, pp. 475–477.

    Article  Google Scholar 

  • Cartwright, P., Developmental insights into origin of complex colonial hydrozoans, Integr. Comp. Biol., 2003, vol. 43, pp. 82–86.

    Article  PubMed  Google Scholar 

  • Cartwright, P. and Nawrocki, A.M., Character evolution in Hydrozoa (phylum Cnidaria), Integ. Comp. Biol., 2010, vol. 50, no. 3, pp. 456–472.

    Article  CAS  Google Scholar 

  • Cartwright, P., Evans, N.M., Dunn, C.W., et al., Phylogenetics of Hydroidolina (Hydrozoa: Cnidaria), JMBA, 2008, vol. 88, pp. 1663–1672.

    Google Scholar 

  • Chisholm, A.D. and Hardin, J., Epidermal morphogenesis (December 01, 2005, in The C. elegans Research Community, WormBook, https://doi.org/www.wormbook.org.doi10.1895/wormbook.1.35.110.1895/wormbook.1.35.1

  • Collins, A.G., Phylogeny of Medusozoa and the evolution of cnidarian life cycles, J. Evol. Biol., 2002, vol. 15, pp. 418–432.

    Article  Google Scholar 

  • Collins, A.G., Recent insights into cnidarian phylogeny, Smithsonian Contrib. Mar. Sci., 2009, vol. 38, pp. 139–149.

    Google Scholar 

  • Collins, A.G., Bentlage, B., Matsumoto, G.I., et al., Solution to the phylogenetic enigma of Tetraplatia, a wormshaped cnidarian, Biol. Lett., 2006, vol. 2, pp. 120–124.

    Article  PubMed  Google Scholar 

  • Collins, A.G., Bentlage, B., Lindner, A., et al., Phylogenetics of Trachylina (Cnidaria: Hydrozoa) with new insights on the evolution of some problematical taxa, J. Mar. Biol. Assoc. UK, 2008, vol. 88, no. 8, pp. 1673–1685.

    Article  Google Scholar 

  • Denoeud, F., Henriet, S., Mungpakdee, S., et al., Plasticity of animal genome architecture unmasked by rapid evo lution of a pelagic tunicate, Science, 2010, vol. 330, no. 6009, pp. 1381–1385.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fol, H., Die erste Entwickelung des Geryonideneies, Arch. f. Naturges, 1873, vol. 41, pp. 471–492.

    Google Scholar 

  • Freeman, G., Experimental studies on embryogenesis in hydrozoans (Trachylina and Siphonophora) with direct development, Biol. Bull., 1983, vol. 165, pp. 591–618.

    Article  PubMed  Google Scholar 

  • Gershwin, L.-A. and Zeidler, W., Csiromedusa medeopolis: a remarkable Tasmanian medusa (Cnidaria: Hydrozoa: Narcomedusae) comprising a new family, genus and species, Zootaxa, 2010, vol. 2439, pp. 24–34.

    Google Scholar 

  • Govindarajan, A.F., Boero, F., and Halanych, K.M., Phylogenetic analysis with multiple markers indicates repeated loss of the adult medusa stage in Campanulariidae (Hydrozoa, Cnidaria), Mol. Phylogen. Evol., 2006, vol. 38, pp. 820–834.

    Article  CAS  Google Scholar 

  • Haeckel, E., Ueber eine neue Form des Generationswechsels bei den Medusen, und uber der Verwandtschaft der Geryoniden und Aeginiden, Monatsbericht der Konigl. Akad. der Wissenschaft zu Berlin, 1865, pp. 83–94.

    Google Scholar 

  • Hanitzsch, P., Der Entwicklungkreislauf von Cunina parasitica Metschn., Mitt. Zool. Stat. Neapel., 1911, vol. 20, pp. 204–250.

    Google Scholar 

  • Hanitzsch, P., Über die Eigenart und Entstehung der Vermehrungsweise durch aborale und orale Proliferation bei Narcopolypen und Scyphopolypen, Zool. Jahrb. Abt. Anat., 1921, vol. 42, pp. 363–416.

    Google Scholar 

  • Holland, L.Z., Genomics, evolution and development of amphioxus and tunicates: the goldilocks principle, J. Exp. Zool. B Mol. Dev. Evol., 2014, vol. 324, no. 4, pp. 342–352.

    Article  PubMed  CAS  Google Scholar 

  • Ikuta, T. and Saiga, H., Organization of Hox genes in ascidians: present, past and future, Dev. Dyn., 2005, vol. 233, no. 2, pp. 382–389.

    Article  PubMed  CAS  Google Scholar 

  • Ivanova-Kazas, O.M., Evolyutsionnaya embriologiya zhivotnykh (Evolutionary Embryology of Animals), St. Petersburg: Nauka, 1995.

    Google Scholar 

  • Jankowski, T., Collins, A.G., and Campbell, R., Global diversity of inland water cnidarians, Hydrobiologia, 2008, vol. 595, pp. 35–40.

    Article  Google Scholar 

  • Kayal, E., Bentlage, B., Cartwright, P., et al., Phylogenetic analysis of higher-level relationships within Hydroidolina (Cnidaria: Hydrozoa) using mitochondrial genome data and insight into their mitochondrial transcriptiome, Peer J., 2015, vol. 3, p. e1403.

    Article  PubMed  CAS  Google Scholar 

  • Maas, O., Über Bau und Entwicklung der Cuninenknospen, Zool. Jahrb. Abt. Anat. Ontog. Tiere, 1892, vol. 5, pp. 271–300.

    Google Scholar 

  • Maas, O., Experimentelle Untersuchungen über die Eifurchung, Sitzungsber. Ges. Morph. Phys. München, 1901, vol. 17, pp. 14–33.

    Google Scholar 

  • Marfenin, N.N. and Kosevich, I.A., Morphogenetic evolution of hydroid colony pattern, Hydrobiologia, 2004, vol. 530/531, pp. 319–327.

    Article  Google Scholar 

  • Marques, A.C. and Collins, A.G., Cladistic analysis of Medusozoa and cnidarian evolution, Invert. Biol., 2004, vol. 123, no. 1, pp. 23–42.

    Article  Google Scholar 

  • Metschnikoff, E., Studien uber die Entwicklung der Meduse und Siphonophoren, Z. Wiss. Zool., 1874, vol. 24, pp. 15–80.

    Google Scholar 

  • Metschnikoff, E., Vergleichend-embryologische Studien, Z. Wiss. Zool., 1882, vol. 36, pp. 433–444.

    Google Scholar 

  • Metschnikoff, E., Embryologische Studien an Medusen. Ein Beitrag Zur Genealogie der Primitiv-Organe, Wien: Alfred Hölder, 1886.

    Book  Google Scholar 

  • Miranda, L.S., Collins, A.G., and Marques, A.C., Molecules clarify a cnidarian life cycle—the “hydrozoan” Microhydrula limopsicola is an early life stage of the staurozoan Haliclystus antarcticus, PLoS One, 2010, vol. 5, no. 4, p. e10182.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Müller, J., Über eine eigenthümliche Meduse des Mittelmeeres und ihren Jugendzustand, Arch. Anat. Physiol. Wiss. Med., 1851, pp. 272–277.

    Google Scholar 

  • Müller, F., Formverwandlungen der Liriope catharinensis n. sp., Arch. f. Naturges, 1859, vol. 25, no. 1, pp. 310–321.

    Google Scholar 

  • Paps, J., Holland, P.W.H., and Shimeld, S.M., A genomewide view of transcription factor gene diversity in chordate evolution: less gene loss in amphioxus?, Brief. Funct. Genomics, 2012, vol. 11, pp. 177–186.

    Article  PubMed  CAS  Google Scholar 

  • Payne, F., Further studies on the life history of Craspedacusta ryderi, a freshwater hydromedusan, Biol. Bull., 1926, vol. 50, no. 6, pp. 433–443.

    Article  Google Scholar 

  • Perkins, H.F., The development of Gonionema murbachii, Proc. Acad. Nat. Sci. Philadelphia, 1902, vol. 54, pp. 750–790.

    Google Scholar 

  • Raskoff, K.A., Bathykorus bouilloni: a new genus and species of deep-sea jellyfish from the Arctic Ocean (Hydrozoa, Narcomedusae, Aeginidae), Zootaxa, 2010, vol. 2361, pp. 57–67.

    Article  Google Scholar 

  • Satou, Y., Mineta, K., Ogasawara, M., et al., Improved genome assembly and evidence-based global gene model set for the chordate Ciona intestinalis: new insight into intron and operon populations, Genome Biol., 2008, vol. 9, p. R152.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schuchert, P., How many hydrozoans species are there?, Zool. Verh. Leiden, 1998, vol. 323, pp. 209–219.

    Google Scholar 

  • Schulze, J. and Schierenberg, E., Evolution of embryonic development in nematodes, EvoDevo, 2011, vol. 2, p. 18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Seipp, S., Schmich, J., and Leitz, T., Apoptosis—a deathinducing mechanism tightly linked with morphogenesis in Hydractinia echinata (Cnidaria, Hydrozoa), Development, 2001, vol. 128, pp. 4891–4898.

    PubMed  CAS  Google Scholar 

  • Seipp, S., Wittig, K., Stiening, B., et al., Metamorphosis of Hydractinia echinata (Cnidaria) is caspase-dependent, Int. J. Dev. Biol., 2003, vol. 50, pp. 63–70.

    Article  CAS  Google Scholar 

  • Seo, H.C., Edvardsen, R.B., Maeland, A.D., et al., Hox cluster disintegration with persistent anteroposterior order of expression in Oikopleura dioica, Nature, 2004, vol. 431, pp. 67–71.

    Article  PubMed  CAS  Google Scholar 

  • Shchelkanovtsev, Ya., Observations on the structure and development of Coelenterata, Izv. Obshch. Lyubit. Estestv., 1905, vol. 110, pp. 1–104.

    Google Scholar 

  • Schmalhausen, I.I., Faktory evolyutsii (Factors of Evolution), Moscow: Izd. AN SSSR, 1946.

    Google Scholar 

  • Simske, J.S. and Hardin, J., Getting into shape: epidermal morphogenesis in Caenorhabditis elegans embryos, Bio-Essays, 2001, vol. 23, no. 1, pp. 12–23.

    CAS  Google Scholar 

  • Stübing, D. and Piepenburg, D., Occurrence of the benthic trachymedusa Ptychogastria polaris Allman, 1878 (Cnidaria: Hydrozoa) of Northeast Greenland and in the northern Barents Sea, Polar Biol., 1998, vol. 19, pp. 193–197.

    Article  Google Scholar 

  • Thuesen, E.V., Crossota millsae (Cnidaria: Trachymedusae: Rhopalonematidae), a new species of viviparous hydromedusa from the deep sea off California and Hawaii, Zootaxa, 2003, vol. 309, pp. 1–12.

    Article  Google Scholar 

  • Tsagkogeorga, G., Cahais, V., and Galtier, N., The population genomics of a fast evolver: high levels of diversity, functional constraint, and molecular adaptation in the tunicate Ciona intestinalis, Genome Biol. Evol., 2012, vol. 4, no. 8, pp. 852–861.

    Article  CAS  PubMed Central  Google Scholar 

  • Ulyanin, V.N., On the origin of Cuninae budding in the stomach of Geryoniidae, Izv. Obshch. Lyubit. Estestv., 1876, vol. 24, pp. 1–32.

    Google Scholar 

  • Waddington, C.H., Canalization of development and the inheritance of acquired characters, Nature, 1942, vol. 150, no. 3811, pp. 563–565.

    Article  Google Scholar 

  • Waddington, C.H., Genetic assimilation of an acquired character, Evolution, 1953, vol. 7, no. 2, pp. 118–126.

    Article  Google Scholar 

  • Williams-Masson, E.M., Malik, A.N., and Hardin, J., An actin-mediated two-step mechanism is required for ventral enclosure of the C. elegans hypodermis, Development, 1997, vol. 124, pp. 2889–2901.

    PubMed  CAS  Google Scholar 

  • Woltereck, R., Bemerkungen zur Entwicklung der Narcomedusen und Siphonophoren, Verh. Deutsch. Zool. Ges., 1905, vol. 15, pp. 106–122.

    Google Scholar 

  • Zalenskij, W., Solmundella und actinula, Mem. Acad. Sci. St.-Petersbourg, 1911, vol. 30, no. 6, pp. 1–70.

    Google Scholar 

  • Zapata, F., Goetz, F.E., Smith, S.A., et al., Phylogenomic analyses support traditional relationships within Cnidaria, PLoS One, 2015, vol. 10, no. 10, p. e0139068.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Kraus.

Additional information

Original Russian Text © B.V. Osadchenko, Yu.A. Kraus, 2018, published in Ontogenez, 2018, Vol. 49, No. 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osadchenko, B.V., Kraus, Y.A. Trachylina: The Group That Remains Enigmatic Despite 150 Years of Investigations. Russ J Dev Biol 49, 134–145 (2018). https://doi.org/10.1134/S1062360418030074

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360418030074

Keywords

Navigation