Skip to main content
Log in

On the work of the developmental biophysics laboratory of the embryology department of Moscow State University

  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

The laboratory is engaged in morphomechanics—the study of self-organization of mechanical forces that create the shape and structure of the embryonic primordia. As part of its work, the laboratory described pulsating modes of mechanical stresses in hydroids, identified and mapped mechanical stresses in the tissues of amphibian embryos, and studied morphogenetic reorganization caused by the relaxation and reorientation of tensions. The role of mechanical stresses in maintaining the orderly architectonics of the embryo is shown. Mechano-dependent genes are detected. Microstrains of embryonic tissues and stress gradients associated with them are described. A model of hyper-recovery of mechanical stresses as a possible driving force of morphogenesis is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arshavskii, I.A., Fiziologicheskie mekhanizmy i zakonomernosti individual’nogo razvitiya (Physiological Mechanisms and Patterns of Ontogenesis), Moscow: Nauka, 1982.

    Google Scholar 

  • Belintsev, B.N., Fizicheskie osnovy biologicheskogo formoobrazovaniya (Physical Bases of Biological Morphogenesis), Moscow: Nauka, 1991.

    Google Scholar 

  • Belintzev, B.N., Beloussov, L.V., and Zaraiskii, A.G., Model of pattern formation in epithelial morphogenesis, J. Theor. Biol., 1987, vol. 129, pp. 369–394.

    Article  Google Scholar 

  • Beloussov, L.V., The role of tensile fields and contact cell polarization in the morphogenesis of amphibian axial rudiments, Roux’ Arch. Dev. Biol., 1980, vol. 188, pp. 1–7.

    Article  Google Scholar 

  • Beloussov, L.V., Contact polarization of Xenopus laevis cells during gastrulation. II. Morphogenetic and differentiational consequences of a relaxational cell polarization: relaxational morphoses, Ontogenez, 1988, vol. 19, no. 4, pp. 405–413.

    Google Scholar 

  • Beloussov, L.V., Mechanically based generative laws of morphogenesis, Phys. Biol., 2008, vol. 5, no. 1, p. 015009.

    Article  PubMed  Google Scholar 

  • Beloussov, L.V., Morphogenesis as a macroscopic self-organizing process, BioSystems, 2012, vol. 109, pp. 262–279.

    Article  PubMed  Google Scholar 

  • Beloussov, L.V., Morphogenesis can be driven by properly parametrised mechanical feedback, Eur. Phys. J., 2013, pp. 132–147.

    Google Scholar 

  • Beloussov, L.V., Morphomechanics of Development (With a Contribution by Andrei Lipchinsky), Heidelberg: Springer Cham, 2015.

    Book  Google Scholar 

  • Beloussov, L.V. and Ermakov, A.S., Artificially applied tensions normalize development of relaxed Xenopus laevis embryos, Russ. J. Dev. Biol., 2001, vol. 32, no. 4, pp. 236–241.

    Article  Google Scholar 

  • Beloussov, L.V. and Grabovsky, V.I., A geometro-mechanical model for pulsatile morphogenesis, Computer Methods in Biomech. Biomed. Engineering, 2003, vol. 6, pp. 53–63.

    Article  CAS  Google Scholar 

  • Beloussov, L.V. and Grabovsky, V.I., A common biomechanical model for the formation of stationary cell domains and propagating waves in the developing organisms, Comp. Methods Biomech. Biomed. Eng., 2005, vol. 8, pp. 381–391.

    Article  CAS  Google Scholar 

  • Beloussov, L.V. and Grabovsky, V.I., Information about a form (on the dynamic laws of morphogenesis), BioSystems, 2007, vol. 87, pp. 204–214.

    Article  PubMed  Google Scholar 

  • Beloussov, L.V., Dorfman, J.G., and Cherdantzev, V.G., Mechanical stresses and morphological patterns in amphibian embryos, J. Embr. Exp. Morphol., 1975, vol. 34, pp. 559–574.

    CAS  Google Scholar 

  • Beloussov, L.V., Kremnyov, S.V., and Luchinskaia, N.N., Simple tools for structuring embryonic rudiments, Jacobs J. Regenerat. Med., 2015, vol. 1, no. 2, p. 008.

    Google Scholar 

  • Beloussov, L.V., Lakirev, A.V., and Naumidi, I.I., The role of external tensions in differentiation of Xenopus laevis embryonic tissues, Cell Diff. Dev., 1988, vol. 25, pp. 165–176.

    Article  CAS  Google Scholar 

  • Beloussov, L.V., Labas, Ju.A., Kazakova, N.I., et al., Cytophysiology of growth pulsations in hydroid polyps, J. Exp. Zool., 1989, vol. 249, pp. 258–270.

    Article  Google Scholar 

  • Beloussov, L.V., Lakirev, A.V., Naumidi, I.I., et al., Effects of relaxation of mechanical tensions upon the early morphogenesis of Xenopus laevis embryos, Int. J. Dev. Biol., 1990, vol. 34, pp. 409–419.

    CAS  PubMed  Google Scholar 

  • Beloussov, L.V., Luchinskaia, N.N., Ermakov, A.S., et al., Gastrulation in amphibian embryos, regarded as a succession of biomechanical feedback events, Int. J. Dev. Biol., 2006, vol. 50, pp. 113–122.

    Article  PubMed  Google Scholar 

  • Brunet, T., … Farge, E., (17 authors)., Evolutionary conservation of early mesoderm specification by mechanotransduction in Bilateria, Nature Commun., 2013, vol. 4, p. 2821.

    Article  Google Scholar 

  • Ermakov, A.S. and Beloussov, L.V., Morphogenetic and differentiational consequences of relaxation of mechanical tensions in X. laevis blastula, Russ. J. Dev. Biol., 1998, vol. 29, no. 6, pp. 274–281.

    Google Scholar 

  • Evstifeeva, A.Yu. and Beloussov, L.V., Surface microdeformations and regulation of cell movements in Xenopus development, Russ. J. Dev. Biol., 2016, vol. 47, no. 1, pp. 1–11.

    Article  Google Scholar 

  • Farge, E., Mechanical induction of twist in the Drosophila foregut/stomodeal primordium, Curr. Biol., 2003, vol. 13, pp. 1365–1377.

    Article  CAS  PubMed  Google Scholar 

  • Goodwin, B., How the Leopard Changed Its Spots. The Evolution of Complexity, London: Weidenfeld and Nicolson, 1994.

    Google Scholar 

  • Gurvich, A.G., Printsipy analiticheskoi biologii i teorii kletochnykh polei (Principles of Analytical Biology and Cell Fields Theory), Moscow: Nauka, 1991.

    Google Scholar 

  • Kazakova, N.I., Kosevich, I.A., and Beloussov, L.V., Influence of mechanical deformations and cytoskeletal inhibitors on growth pulsations of hydroid polyps, Russ. J. Dev. Biol., 1997, vol. 28, no. 4, pp. 240–246.

    Google Scholar 

  • Labas, Yu.A., Beloussov, L.V., and Kazakova, N.I., Kinematics, biological role, and cytophysiology growth pulsations in hydroid polyps, Tsitologiia, 1992, vol. 34, pp. 5–23.

    Google Scholar 

  • Mansurov, A.N. and Beloussov, L.V., Passive and active reactions of embryonic tissues to the action of dosed mechanical forces, Russ. J. Dev. Biol., 2011, vol. 42, no. 2, pp. 101–107.

    Article  Google Scholar 

  • Troshina, T.G., Glagoleva, N.S., and Beloussov, L.V., Statistical study of rapid mechanodependent cell movements in deformed explants of African clawed frog Xenopus laevis embryonic tissues, Russ. J. Dev. Biol., 2011, vol. 42, no. 5, pp. 301–311.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Beloussov.

Additional information

Original Russian Text © L.V. Beloussov, 2017, published in Ontogenez, 2017, Vol. 48, No. 1, pp. 4–7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beloussov, L.V. On the work of the developmental biophysics laboratory of the embryology department of Moscow State University. Russ J Dev Biol 48, 1–4 (2017). https://doi.org/10.1134/S1062360417010027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360417010027

Keywords

Navigation