Skip to main content
Log in

Hox genes and animal regeneration

  • Reviews
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

The concept of regeneration is intimately associated with ideas about positional information, that is, the distribution of various signals prescribing cells their location in an embryo or an adult organism. Hox genes are perfect candidates for the role of factors creating positional information. Their main function is thought to be regionalization of the embryo and the determination of the anterior/posterior (A/P) axis of the bilaterian body according to the rules of temporal and spatial colinearity. At the same time, Hox genes are also expressed postembryonically and may participate in various processes in the adult body. In particular, Hox genes are involved in regeneration, as shown on animals from different evolutionary clades. During reparation Hox genes are responsible for regionalization and specification of the newly formed structures, which reflects their embryonic role. This is not all, however. Hox transcription patterns in some adult organisms and their expression dynamics after damage suggest that Hox genes are involved in creating positional information in the adult body. This information is necessary for consistent reparation, while its fast reorganization may accelerate the reparative process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackema, K.B. and Charité, J., Mesenchymal stem cells from different organs are characterized by distinct topographic Hox codes, Stem Cells Dev., 2008, vol. 17, pp. 979–991.

    Article  CAS  PubMed  Google Scholar 

  • Agata, K., Tanaka, T., Kobayashi, C., et al., Intercalary regeneration in planarians, Dev. Dynam., 2003, vol. 226, pp. 308–316.

    Article  CAS  Google Scholar 

  • Argiropoulos, B. and Humphries, R.K., Hox genes in hematopoiesis and leukemogenesis, Oncogene, 2007, vol. 26, pp. 6766–6776.

    Article  CAS  PubMed  Google Scholar 

  • Awgulewitsch, A., Hox in hair growth and development, Naturwissenschaften, 2003, vol. 90, pp. 193–211.

    Article  CAS  PubMed  Google Scholar 

  • Bakalenko, N.I., Novikova, E.L., Nesterenko, A.Y., et al., Hox gene expression during postlarval development of the polychaete Alitta virens, EvoDevo, 2013, vol. 4, p. 13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brun, A.C., Björnsson, J.M., Magnusson, M., et al., Hoxb4-deficient mice undergo normal hematopoietic development but exhibit a mild proliferation defect in hematopoietic stem cells, Blood, 2004, vol. 103, pp. 4126–4133.

    Article  CAS  PubMed  Google Scholar 

  • Bryant, S.V., Endo, T., and Gardiner, D.M., Vertebrate limb regeneration and the origin of limb stem cells, Int. J. Dev. Biol., 2002, vol. 46, pp. 887–896.

    PubMed  Google Scholar 

  • Campbell, G. and Tomlinson, A., Initiation of the proximodistal axis in insect legs, Development, 1995, vol. 121, pp. 619–628.

    CAS  Google Scholar 

  • Carlson, B.M., Principles of Regenerative Biology, Burlington, MA: Academic Press, 2007, pp. 1–24.

    Book  Google Scholar 

  • Chang, H.Y., Chi, J.T., Dudoit, S., et al., Diversity, topographic differentiation, and positional memory in human fibroblasts, Proc. Natl. Acad. Sci. U. S. A., 2002, vol. 99, pp. 12877–12882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, W., Liu, J., Yoshida, H., et al., Lineage infidelity of epithelial ovarian cancers is controlled by HOX genes that specify regional identity in the reproductive tract, Nature Med., 2005, vol. 11, pp. 531–537.

    Article  CAS  PubMed  Google Scholar 

  • Cho, S.J., Koh, K.S., Lee, E., et al., Differential expression of three labial genes during earthworm head regeneration, Biosci. Biotechnol. Biochem., 2009, vol. 73, pp. 2609–2614.

    Article  CAS  PubMed  Google Scholar 

  • Chung, N., Jee, B.K., Chae, S.W., et al., HOX gene analysis of endothelial cell differentiation in human bone marrow-derived mesenchymal stem cells, Mol. Biol. Rep., 2009, vol. 36, pp. 227–235.

    Article  CAS  PubMed  Google Scholar 

  • Endo, T., Bryant, S.V., Gardiner, D.M., A stepwise model system for limb regeneration, Dev. Biol., 2004, vol. 270, pp. 135–145.

    Article  CAS  PubMed  Google Scholar 

  • Fischbach, N.A., Rozenfeld, S., Shen, W., et al., HOXB6 overexpression in murine bone marrow immortalizes a myelomonocytic precursor in vitro and causes hematopoietic stem cell expansion and acute myeloid leukemia in vivo, Blood, 2005, vol. 105, pp. 1456–1466.

    Article  CAS  PubMed  Google Scholar 

  • French, V., Leg regeneration in the cockroach, Blatella germanica. II. Regeneration from a non-congruent tibial graft host junction, J. Embryol. Exp. Morphol., 1976, vol. 35, pp. 267–301.

    CAS  PubMed  Google Scholar 

  • Gardiner, D.M. and Bryant, S.V., Molecular mechanisms in the control of limb regeneration: the role of homeobox genes, Int. J. Dev. Biol., 1996, vol. 40, pp. 797–805.

    CAS  PubMed  Google Scholar 

  • Han, M., Yang, X., Lee, J., et al., Development and regeneration of the neonatal digit tip in mice, Dev. Biol., 2008, vol. 315, pp. 125–135.

    Article  CAS  PubMed  Google Scholar 

  • Iten, L.E. and Bryant, S.V., The interaction between the blastema and stump in the establishment of the anterior-posterior and proximal-distal organization of the limb regenerate, Dev. Biol., 1975, vol. 44, pp. 119–147.

    Article  CAS  PubMed  Google Scholar 

  • Ivanov, P.P., Obshchaya i sravnitel’naya embriologiya (General and Comparative Embryology), Leningrad: Biomedgiz, 1937.

    Google Scholar 

  • Klausen, C., Leung, P.C., and Auersperg, N., Cell motility and spreading are suppressed by HOXA4 in ovarian cancer cells: possible involvement of beta1 integrin, Mol. Cancer. Res., 2009, vol. 7, pp. 1425–1437.

    Article  CAS  PubMed  Google Scholar 

  • Ko, K.H., Lam, Q.L., Zhang, M., et al., Hoxb3 deficiency impairs B lymphopoiesis in mouse bone marrow, Exp. Hematol., 2007, vol. 35, pp. 465–475.

    Article  CAS  PubMed  Google Scholar 

  • Kulakova, M., Bakalenko, N., Novikova, E., et al., Hox gene expression in larval development of the polychaetes Nereis virens and Platynereis dumerilii (Annelida, Lophotrochozoa), Dev. Genes. Evol., 2007, vol. 217, pp. 39–54.

    Article  CAS  PubMed  Google Scholar 

  • Leucht, P., Kim, J.B., Amasha, R., et al., Embryonic origin and Hox status determine progenitor cell fate during adult bone regeneration, Development, 2008, vol. 135, pp. 2845–2854.

    Article  CAS  PubMed  Google Scholar 

  • Maden, M., Vitamin a and pattern formation in the regenerating limb, Nature, 1982, vol. 295, pp. 672–675.

    Article  CAS  PubMed  Google Scholar 

  • Maden, M., The effect of vitamin A (retinoids) on pattern formation implies a uniformity of developmental mechanisms throughout the animal kingdom, Acta Biotheor., 1993, vol. 41, no. 4, pp. 425–445.

    Article  CAS  PubMed  Google Scholar 

  • Mahdipour, E. and Mace, K.A., Hox transcription factor regulation of adult bone-marrow-derived cell behaviour during tissue repair and regeneration, Expert Opin. Biol. Ther., 2011, vol. 11, pp. 1079–1090.

    Article  CAS  PubMed  Google Scholar 

  • Mahdipour, E., Charnock, J.C., and Mace, K.A., Hoxa3 promotes the differentiation of hematopoietic progenitor cells into proangiogenic Gr-1+ CD11b+ myeloid cells, Blood, 2011, vol. 117, pp. 815–826.

    Article  CAS  PubMed  Google Scholar 

  • Mark, M., Rijli, F.M., and Chambon, P., Homeobox genes in embryogenesis and pathogenesis, Pediatr. Res., 1997, vol. 42, pp. 421–429.

    Article  CAS  PubMed  Google Scholar 

  • Martin, P., Wound healing-aiming for perfect skin regeneration, Science, 1997, vol. 276, pp. 75–81.

    Article  CAS  PubMed  Google Scholar 

  • Mohanty-Hejmadi, P., Dutta, S.K., and Mahapatra, P., Limbs generated at site of tail amputation in marbled balloon frog after vitamin a treatment, Nature (London), 1992, vol. 355, pp. 352–353.

    Article  CAS  Google Scholar 

  • Morgan, R. and Whiting, K., Differential expression of HOX genes upon activation of leukocyte sub-populations, Int. J. Hematol., 2008, vol. 87, pp. 246–249.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nachtrab, G., Kikuchi, K., Tornini, V.A., et al., Transcriptional components of anteroposterior positional information during zebrafish fin regeneration, Development, 2013, vol. 140, no. 18, pp. 3754–3764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niazi, I.A. and Saxena, S., Abnormal hind limb regeneration in tadpoles of the toad, Bufo andersoni, exposed to excess vitamin, Folia Biol. (Krakow), 1978, vol. 26, pp. 3–8.

    CAS  Google Scholar 

  • Nicolas, S., Papillon, D., Perez, Y., et al., The spatial restrictions of 5' HoxC genes expression are maintained in adult newt spinal cord, Biol. Cell, 2003, vol. 95, pp. 589–594.

    Article  CAS  PubMed  Google Scholar 

  • Niederreither, K. and Dolle, P., Retinoic acid in development: towards an integrated view, Nat. Rev. Genet., 2008, vol. 9, pp. 541–553.

    Article  CAS  PubMed  Google Scholar 

  • Nogi, T. and Watanabe, K., Position-specific and noncolinear expression of the planarian posterior (Abdominal-B-like) gene, Dev. Growth Differ., 2001, vol. 43, pp. 117–184.

    Article  Google Scholar 

  • Novikova, E.L., Bakalenko, N.I., Nesterenko, A.Y., et al., Expression of Hox genes during regeneration of nereid polychaete Alitta (Nereis) virens (Annelida, Lophotrochozoa), EvoDevo, 2013, vol. 4, p. 14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okada, T.S.J., A brief history of regeneration research—for admiring Professor Niazi’s discovery of the effect of vitamin A on regeneration, J. Biosci., 1996, vol. 21, pp. 261–271.

    Article  Google Scholar 

  • Orii, H., Kato, K., Umesono, Y., et al., The planarian Hom/Hox homeobox genes (Plox) expressed along the anteroposterior axis, Dev. Biol., 1999, vol. 210, pp. 456–468.

    Article  CAS  PubMed  Google Scholar 

  • Pfeifer, K., Dorresteijn, A.W., and Frobius, A.C., Activation of Hox genes during caudal regeneration of the polychaete annelid Platynereis dumerilii, Dev. Genes Evol., 2012, vol. 222, pp. 165–179.

    Article  CAS  PubMed  Google Scholar 

  • Savard, P., Gates, P.B., and Brockes, J.P., Position dependent expression of a homeobox gene transcript in relation to amphibian limb regeneration, EMBO J., 1988, vol. 7, pp. 4275–4282.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shah, N. and Sukumar, S., The Hox genes and their roles in oncogenesis, Nat. Rev. Cancer, 2010, vol. 10, pp. 361–371.

    Article  CAS  PubMed  Google Scholar 

  • Simon, H.G. and Tabin, C.J., Analysis of Hox-4.5 and Hox-3.6 expression during newt limb regeneration: differential regulation of paralogous Hox genes suggest different roles for members of different Hox clusters, Development, 1993, vol. 117, pp. 1397–1407.

    CAS  PubMed  Google Scholar 

  • Slack, J.M.W., Morphogenetic gradients-past and present, Trends Biol. Sci., 1987, vol. 12, pp. 200–204.

    Article  CAS  Google Scholar 

  • Thummel, R., Ju, M., Sarras, M.P., et al., Both Hoxc13 orthologs are functionally important for zebrafish tail fin regeneration, Dev. Genes Evol., 2007, vol. 217, pp. 413–420.

    Article  CAS  PubMed  Google Scholar 

  • Yang, M., Li, Q.F., and Zhang, F., Hox genes in the skin, Chin. Med. J. (Engl.), 2010, vol. 123, pp. 2607–2612.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. L. Novikova.

Additional information

Published in Russian in Ontogenez, 2016, Vol. 47, No. 4, pp. 209–218.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikova, E.L., Bakalenko, N.I., Nesterenko, A.Y. et al. Hox genes and animal regeneration. Russ J Dev Biol 47, 173–180 (2016). https://doi.org/10.1134/S106236041604007X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106236041604007X

Keywords

Navigation