Skip to main content
Log in

Effect of exogenous factors on the induction of spicule formation in sea urchin embryonic cell cultures

  • Cell Differentiation and Proliferation
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

The effect of exogenous factors on the realization of the spicule formation program in two sea urchin species, Strongylocentrotus intermedius and S. nudus, has been studied in primary embryonic cell cultures derived from the blastula and gastrula stages. It has been shown that the process of spicule formation depends on the type of substrate and the composition of the medium. An original finding is that calf or horse serum necessary for spicule formation in vitro can be replaced by a complex of factors including insulin, transferrin, and lectins. Methods allowing control over the growth and differentiation of marine invertebrate embryonic cells in vitro open prospects for their application to practical problems such as the establishment of cell cultures producing certain mineral structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrecht, M., Chiou, J.W., Guo, J., et al., Probing the Organic-Mineral Interface at the Molecular Level in Model Biominerals, Langmuir, 2008, vol. 24, no. 6, pp. 2680–2687.

    Article  PubMed  Google Scholar 

  • Akiyama, S.K. and Johnson, M.D., Fibronectin in Evolution: Presence in Invertebrates and Isolation from Microcina porifera, Comp. Biochem. Phys. B, 1983, vol. 76, pp. 687–694.

    Article  CAS  Google Scholar 

  • Alliegro, M.C. and Alliegro, M.A., The Structure and Activities of Echinonectin: A Developmentally Regulated Cell Adhesion Glycoprotein with Galactose-Specific Lectin Activity, Glycobiology, 1991, vol. 1, pp. 253–256.

    Article  PubMed  CAS  Google Scholar 

  • Alliegro, M.C., Burdsal, C.A., and McClay, D.R., Galactose-Specific Lectin from Sea Urchin Embryos, Biochemistry, 1990, vol. 29, pp. 2135–2141.

    Article  PubMed  CAS  Google Scholar 

  • Angerer, L.M., Chambers, S.A., Yang, Q., et al., Expression of a Collagen Gene in Mesenchyme Lineages of the Strongylocentrotus purpuratus Embryo, Genes Dev., 1988, vol. 2, pp. 239–246.

    Article  PubMed  CAS  Google Scholar 

  • Bernstine, E.G., Hoopert, M.L., Grandchamp, S., et al., Alkaline Phosphatase Activity in Mouse Teratoma, Proc. Nat. Acad. Sci. U.S.A., 1973, vol. 70, Part II, pp. 3899–3903.

    Article  Google Scholar 

  • Brons, G.M., Smithers, L.E., Trotter, M.W.B., et al., Derivation of Pluripotent Epiblast Stem Cells from Mammalian Embryos, Nature, 2007, vol. 448, pp. 191–195.

    Article  PubMed  CAS  Google Scholar 

  • Calestani, C., Rast, J., and Davidson, E., Isolation of Pigment Cell Specific Genes in the Sea Urchin Embryo by Differential Macroarray Screening, Development, 2003, vol. 130, pp. 4587–4596.

    Article  PubMed  CAS  Google Scholar 

  • Cameron, R.A., Smith, L.C., Britten, R.J., and Davidson, E.H., Ligand-Dependent Stimulation of Introduced Mammalian Brain Receptors Alters Spicule Symmetry and Other Morphogenetic Events in Sea Urchin Embryos, Mech. Dev., 1994, vol. 45, no. 1, pp. 31–47.

    Article  PubMed  CAS  Google Scholar 

  • Custodio, M.R., Hajdu, E., and Muricy, G., Cellular Dynamics of in vitro Allogeneic Reactions of Hymeniacidon heliophila (Demospongiae: Halichondrida), Mar. Biol. (Berlin), 2004, vol. 144, pp. 999–1010.

    Article  Google Scholar 

  • Davidson, E.H., The Regulatory Genome: Gene Regulatory Networks in Development and Evolution, San Diego, CA: Acad. Press, 2006.

    Google Scholar 

  • Decker, G.L., Morrill, J.B., and Lennarz, W.J., Characterization of Sea Urchin Primary Mesenchyme Cells and Spicules during Biomineralization in vitro, Development, 1987, vol. 101, pp. 297–312.

    PubMed  CAS  Google Scholar 

  • Edelman, G.M., Cell Adhesion and Morphogenesis: The Regulation Hypothesis, Proc. Nat. Acad. Sci. U.S.A., 1984, vol. 81, pp. 1460–1464.

    Article  CAS  Google Scholar 

  • Edelman, G.M., Modulation Mechanisms in Cell-Cell Recognition, Trends Pharmacol. Sci., 1985, vol. 6, pp. 208–214.

    Article  CAS  Google Scholar 

  • Ettensohn, C.A., Kitazawa, C., Cheers, M.S., et al., Gene Regulatory Networks and Developmental Plasticity in the Early Sea Urchin Embryo: Alternative Deployment of the Skeletogenic Gene Regulatory Network, Development, 2007, vol. 134, pp. 3077–3087.

    Article  PubMed  CAS  Google Scholar 

  • Ettensohn, C.A., Lessons from a Gene Regulatory Network: Echinoderm Skeletogenesis Provides Insights into Evolution, Plasticity and Morphogenesis, Development, 2009, vol. 136, pp. 11–21.

    Article  PubMed  CAS  Google Scholar 

  • Hynes, R.O., Fibronectins, New York: Springer, 1990.

    Book  Google Scholar 

  • Illies, M.R., Peeler, M.T., Dechtiaruk, A.M., et al., Identification and Developmental Expression of New Biomineralization Proteins in the Sea Urchin Strongylocentrotus purpuratus, Dev. Genes Evol., 2002, vol. 9, pp. 419–31.

    Article  Google Scholar 

  • Isaeva, V.V., Kletki v morfogeneze (Cells in Morphogenesis), Moscow: Nauka, 1994.

    Google Scholar 

  • Ishizuka, Y., Minokawa, T., and Amemiya, S., Micromere Descendants at the Blastula Stage Are Involved in Normal Archenteron Formation in Sea Urchin Embryos, Dev. Genes Evol., 2001, vol. 211, pp. 83–88.

    Article  PubMed  CAS  Google Scholar 

  • Kamalia, N., McCulloch, C.A.G., Tenenbaum, H.C., et al., Direct Flow Cytometric Quantification of Alkaline Phosphatase Activity in Rat Bone Marrow Stromal Cells, J. Histochem. Cytochaniary, 1992, vol. 40, no. 7, pp. 1059–1065.

    Article  CAS  Google Scholar 

  • Kaneko, H., Kawahara, Y., Okamoto, M., et al., Study on the Nature of Starfish Larval Muscle Cells in vitro, Zoolog. Sci., 1997, vol. 14, pp. 287–296.

    Article  Google Scholar 

  • Kerkis, A.Yu. and Isaeva, V.V., Electron-Microscopic Study of Spiculogenesis in Embryonic Cell Culture of the Sea Urchin Strongylocentrotus nudus, Ontogenez, 1984, vol. 15, no. 1, pp. 34–40.

    Google Scholar 

  • Kiyomoto, M., Zito, F., Sciarrino, S., et al., Commitment and Response to Inductive Signals of Primary Mesenchyme Cells of the Sea Urchin Embryo, Dev. Growth Differ., 2004, vol. 46, no. 1, pp. 107–14.

    Article  PubMed  Google Scholar 

  • Latham, V.H., Herrera, S., Rostamiani, K., et al., Rapid Identification of Lectin Receptors and Their Possible Function in Sea Urchin Cell Systems, Acta Histochem., 1995, vol. 97, no. 4, pp. 373–382.

    PubMed  CAS  Google Scholar 

  • Mafranga, V., Di Ferro, D., Cervello, M., et al., Adhesion of Sea Urchin Embryonic Cells to Substrata Coated with Cell Adhesion Molecules, Biol. Cell., 1991, vol. 1, no. 71, pp. 289–291.

    Article  Google Scholar 

  • McCarty, R.A. and Spiegel, M., Serum Effects on the in vitro Differentiation of Sea Urchin Micromeres, Exp. Cell Res., 1983, vol. 149, pp. 433–441.

    Article  Google Scholar 

  • Mintz, G.R. and Lennarz, W.J., Spicule Formation by Cultured Embryonic Cells from the Sea Urchin, Cell Diff., 1982, vol. 11, pp. 331–333.

    Article  Google Scholar 

  • Odintsova, N.A., Osnovy kul’tivirovaniya kletok morskikh bespozvonochnykh (Fundamentals of Cultivation of Cells of Marine Invertebrates), Vladivostok: Dal’nauka, 2001.

    Google Scholar 

  • Odintsova, N.A., Belogortseva, N.I., Ermak, A.V., et al., Adhesive and Growth Properties of Lectin from the Ascidian Didemnum ternatanum on Cultivated Marine Invertebrate Cells, BBA-Mol. Cell Biol., 1999, vol. 1448, pp. 381–389.

    CAS  Google Scholar 

  • Okazaki, K., Spicule Formation by Isolated Micromers of Sea Urchin Embryo, Am. Zool., 1975, vol. 15, no. 3, pp. 567–582.

    Google Scholar 

  • Oliveri, P., Carrick, D.M., and Davidson, E.H., A Gene Regulatory Network that Directs Micromere Specification in the Sea Urchin Embryo, Dev. Biol., 2002, vol. 246, pp. 209–228.

    Article  PubMed  CAS  Google Scholar 

  • Ozeki, Y., Matsui, T., and Titani, K., Cell Adhesive Activity of Two Animal Lectins Through Different Recognition Mechanisms, FEBS Lett., 1991, vol. 30, pp. 2391–2394.

    CAS  Google Scholar 

  • Page, L. and Benson, S., Analysis of Competence in Cultured Sea Urchin Micromeres, Exp. Cell Res., 1992, vol. 203, no. 2, pp. 305–311.

    Article  PubMed  CAS  Google Scholar 

  • Pain, B., Clark, M.E., Shen, M., et al., Long-Term in vitro Culture and Characterization of Avian Embryonic Stem Cells with Multiple Morphogenetic Potentialities, Development, 1996, vol. 122, pp. 2339–2348.

    PubMed  CAS  Google Scholar 

  • Peled-Kamar, M., Hamilton, P., and Wilt, F.H., Spicule Matrix Protein LSM34 Is Essential for Biomineralization of the Sea Urchin Spicule, Exp. Cell Res., 2002, vol. 272, no. 1, pp. 56–61.

    Article  PubMed  CAS  Google Scholar 

  • Ruoslahti, E. and Pierschbacher, M.D., New Perspectives in Cell Adhesion: RGD and Integrins, Science, 1987, vol. 238, pp. 491–497.

    Article  PubMed  CAS  Google Scholar 

  • Seto, J., Zhang, Y., Hamilton, P., and Wilt, F., The Localization of Occluded Matrix Proteins in Calcareous Spicules of Sea Urchin Larvae, J. Struct. Biol., 2004, vol. 1, pp. 123–130.

    Article  Google Scholar 

  • Tanabe, J., Fujita, H., Iwamatsu, A., Mohri, H., et al., Fibronectin Inhibits Platelet Aggregation Independently of RGD-Sequence, J. Biol. Chem., 1993, vol. 268, pp. 27143–27147.

    PubMed  CAS  Google Scholar 

  • Wilt, F.H. and Ettensohn, C.A., The Morphogenesis and Biomineralization of the Sea Urchin Larval Skeleton, in Handbook of Biomineralization, Bauerlein, E., Ed., Weinheim: Wiley-VCH Press, 2007, pp. 183–210.

    Google Scholar 

  • Wilt, F.H., Biomineralization of the Spicules of Sea Urchin Embryos, Zoolog. Sci., 2002, vol. 3, pp. 253–261.

    Article  Google Scholar 

  • Wilt, F.H., Matrix and Mineral in the Sea Urchin Larval Skeleton, J. Struct. Biol., 1999, vol. 126, no. 3, pp. 216–226.

    Article  PubMed  CAS  Google Scholar 

  • Yajima, M. and Kiyomoto, M., Study of Larval and Adult Skeletogenic Cells in Developing Sea Urchin Larvae, Biol. Bull., 2006, vol. 211, no. 2, pp. 183–192.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. O. Kipryushina.

Additional information

Original Russian Text © Yu.O. Kipryushina, N.A. Odintsova, 2011, published in Ontogenez, 2011, Vol. 42, No. 5, pp. 390–396.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kipryushina, Y.O., Odintsova, N.A. Effect of exogenous factors on the induction of spicule formation in sea urchin embryonic cell cultures. Russ J Dev Biol 42, 342–348 (2011). https://doi.org/10.1134/S1062360411050080

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360411050080

Keywords

Navigation