Skip to main content
Log in

The role of Cl in pollen germination and tube growth

  • Plant Developmental Biology
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

The involvement of Cl in cytoplasm polarization in the pollen tube and membrane potential control during pollen germination in vitro was studied by fluorescence techniques in Nicotiana tabacum. Cl release from cells was blocked by the anion channel inhibitor nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) or by the addition of Cl to the incubation medium. The concentrations of the inhibitor (40 μM) and extracellular Cl completely inhibiting pollen germination (200 mM) and pollen tube growth (100 mM) were used. The release of anions from the pollen grain has been revealed in the first minutes of hydration also in the presence of 200 mM Cl. The inhibitor blocked this process completely, which points to the significance of the NPPB-sensitive anion channels in the transmembrane Cl transport at the early activation stage. The pollen tube membrane was hyperpolarized in the presence of 100 mM Cl; however, exogenous Cl had no effect on the compartmentalization and organelle movement in the tube. The inhibitor depolarized the plasma membrane in the pollen grain and tube and affected the polar organization of the cytoplasm and organelle movement. Thus, activity of NPPB-sensitive chloride channels was required to regulate the potential on the plasma membrane and to maintain the functional compartmentalization of the cytoplasm, which provides for the polar growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreyuk, D.S., Matveeva, N.P., Tukeeva, M.I., et al., Inorganic Ion Dynamics in the Microspore and Pollen Grain of Tobacco during the Development of the Male Gametophyte, Ontogenez, 2000, vol. 31, pp. 114–119.

    Google Scholar 

  • Battey, N.H., James, N.C., Greenland, A.J., et al., Exocytosis and Endocytosis, Plant Cell, 1999, vol. 11, no. 643–659.

  • Becker, J.D., Boavida, L.C., Carneiro, J., et al., Transcriptional Profiling of Arabidopsis Tissues Reveals the Unique Characteristics of the Pollen Transcriptome, Plant Physiol., 2003, vol. 133, pp. 713–725.

    Article  PubMed  CAS  Google Scholar 

  • Bushart, T.J. and Roux, S.J., Conserved Features of Germination and Polarized Cell Growth: A Few Insights from a Pollen Fern Spore Comparison, Annal. Bot., 2007, vol. 99, pp. 9–17.

    Article  CAS  Google Scholar 

  • Cai, G., Casino, C.D., Romagnoli, S., et al., Pollen Cytoskeleton during Germination and Tube Growth, Curr. Sci., 2005, vol. 89, pp. 1853–1860.

    Google Scholar 

  • Campanoni, P. and Blatt, M.R., Membrane Trafficking and Polar Growth in Root Hairs and Pollen Tubes, J. Exp. Bot., 2007, vol. 58, pp. 65–74.

    Article  PubMed  CAS  Google Scholar 

  • Cheung, A.Y. and Wu, H.-M., Structural and Functional Compartmentalization in Pollen Tubes, J. Exp. Bot., 2007, vol. 58, pp. 75–82.

    Article  PubMed  CAS  Google Scholar 

  • Dutta R., Robinson K.R. Identification and characterization of stretch-activated ion channels in pollen protoplasts, Plant Physiol., 2004, vol. 135, pp. 1398–1406.

    Article  PubMed  CAS  Google Scholar 

  • Emri, M., Balkay, L., Krasznai, Z., et al., Wide Applicability of a Flow Cytometric Assay to Measure Absolute Membrane Potentials on the Millivolt Scale, Eur. Biophys. J., 1998, vol. 28, pp. 78–83.

    Article  CAS  Google Scholar 

  • Feijó, J.A., Malho, R., and Obermeyer, G., Ion Dynamics and Its Possible Role during in Vitro Pollen Germination and Tube Growth, Protoplasma., 1995, vol. 187, pp. 155–167.

    Article  Google Scholar 

  • Feijó, J.A., Sainhas, J., Hackett, G.R., et al., Growing Pollen Tubes Possess a Constitutive Alkaline Band in the Clear Zone and a Growth Dependent Acidic Tip, J. Cell Biol., 1999, vol. 144, pp. 483–496.

    Article  PubMed  Google Scholar 

  • Geitmann A., Emons A.M.C. The cytoskeleton in plant and fungal cell tip growth, J. Microscop., 2000, vol. 198, pp. 218–245.

    Article  CAS  Google Scholar 

  • Hadley, R., Hable, W.E., and Kropf, D.L., Polarization of the Endomembrane System Is an Early Event in Fucoid Zygote Development, BMC Plant Biol., 2006.

  • Hepler, P.K., Lovy-Wheeler, A., McKenna, S., et al., Ions and Pollen Tube Growth, in The Pollen Tube Malho, R., Ed., Heidelberg: Springer, 2006 p. 47–69.

    Chapter  Google Scholar 

  • Jentsch T.J., Stein V., Weinreich F., et al., Molecular structure and physiological function of chloride channels, Physiol. Rev., 2002, vol. 82, pp. 503–568.

    PubMed  CAS  Google Scholar 

  • Ma, J.F., Role of Organic Acids in Detoxification of Aluminum in Higher Plants, Plant Cell Physiol., 2000, vol. 41, pp. 383–390.

    PubMed  CAS  Google Scholar 

  • Malhó, R., Liu, Q., Monteiro, D., et al., Signalling Pathways in Pollen Germination and Tube Growth, Protoplasma, 2006, vol. 228, pp. 21–30.

    Article  PubMed  Google Scholar 

  • Malhó, R., Read, N.D., Trewavas, A.J., et al., Calcium Channel Activity during Pollen Tube Growth, Plant Cell, 1995, vol. 7, pp. 1173–1184.

    Article  PubMed  Google Scholar 

  • Matveeva, N.P., Voitsekh, O.O., Andreyuk, D.S., et al., The Role of H+-ATPase and Alternative Oxidase in the Regulation of Intracellular pH at the Different Stages of Development of the Tobacco Male Gametophyte, Ontogenez, 2002, vol. 33, pp. 436–443.

    PubMed  CAS  Google Scholar 

  • Matveeva, N.P., Andreyuk, D.S., Voitsekh, O.O., et al., Regulatory Changes in Intracellular pH and Cl Release during Early Pollen germination in Vitro, Fiziol. Rastenii, 2003a, vol. 50, pp. 360–365.

    Google Scholar 

  • Matveeva, N.P., Andreyuk, D.S., and Ermakov, I.P., Transport of Cl across the Plasma Membrane during Pollen germination in Tobacco, Biokhimiya, 2003b, vol. 68, pp. 1550–1555.

    Google Scholar 

  • Matveeva, N.P., Andreyuk, D.S., Lazareva, E.A., et al., Effect of Concanavalin A on Membrane Potential and Intracellular pH during Tobacco Pollen Grain Activation in Vitro, Fiziol. Rastenii, 2004, vol. 51, pp. 549–554.

    Google Scholar 

  • Messerli, M.A., Danuser, G., and Robinson, K.R., Pulsatile Influxes of H+, K+ and Ca2+ Lag Growth Pulses of Lilium longiflorum Pollen Tubes, J. Cell Sci., 1999, vol. 112, pp. 1497–1509.

    PubMed  CAS  Google Scholar 

  • Messerli, M.A., Smith, P.J.S., Lewis, R. C., et al., Chloride Fluxes in Lily Pollen Tubes: A Critical Reevaluation, Plant J., 2004, vol. 40, pp. 799–812.

    Article  PubMed  CAS  Google Scholar 

  • Mileykovskaya, E., Dowhana, W., Birkeb, R.L., et al. Cardiolipin Binds Nonyl Acridine Orange by Aggregating the Dye at Exposed Hydrophobic Domains on Bilayer Surfaces, FEBS Lett., 2001, vol. 507, pp. 187–190.

    Article  PubMed  CAS  Google Scholar 

  • Moreno, N., Colaco, R., and Feijo, J.A., The Pollen Tube Oscillator: Integrating Biophysics and Biochemistry into Cellular Growth and Morphogenesis, in Rhythms in Plants: Phenomenology, Mechanisms, and Adaptive Significance, Mancuso, S. and Shabala, S., Eds., Heidelberg: Springer-Verlag, 2007, pp. 39–62.

    Google Scholar 

  • Mouline, K., Very, A.-A., Gaymard, F., et al., Pollen Tube Development and Competitive Ability Are Impaired by Disruption of a Shaker K+ Channel in Arabidopsis, Genes Devel., 2001, vol. 16, pp. 339–350.

    Article  Google Scholar 

  • Obermeyer, G. and Blatt, M.R., Electrical Properties of Intact Pollen Grains of Lilium longiflorum: Characteristics of the Non-Germinating Pollen Grain, J. Exp. Bot., 1995, vol. 46, pp. 803–813.

    Article  CAS  Google Scholar 

  • Palanivelu, R. and Preuss, D., Pollen Tube Targeting and Axon Guidance: Parallels in Tip Growth Mechanisms, Tr. Cell Biol., 2000, vol. 10, pp. 517–524.

    Article  CAS  Google Scholar 

  • Parton, R.M., Fischer-Parton, S., Watahiki, M.K., et al., Dynamics of the Apical Vesicle Accumulation and the Rate of Growth Are Related in Individual Pollen Tubes, J. Cell Sci., 2001, vol. 114, pp. 2685–2695.

    PubMed  CAS  Google Scholar 

  • Roberts, S.K., Plasma Membrane Anion Channels in Higher Plants and Their Putative Functions in Roots, New Phytol., 2006, vol. 169, pp. 647–666.

    Article  PubMed  Google Scholar 

  • Rodriguez-Rosales, M.P., Roldan, M., Belver, A., et al., Correlation between in Vitro Germination Capacity and Proton Extrusion in Olive Pollen, Plant Physiol. Biochem., 1989, vol. 27, pp. 723–728.

    CAS  Google Scholar 

  • Roy, S.J., Holdaway-Clarke, T.L., Hackett, G.R., et al., Uncoupling Secretion and Tip Growth in Lily Pollen Tubes: Evidence for the Role of Calcium in Exocytosis, Plant J., 1999, vol. 19, pp. 379–386.

    Article  PubMed  CAS  Google Scholar 

  • Samaj, J., Methods and Molecular Tools for Studying Endocytosis in Plants—An Overview, in Plant Endocytosis, Samaj. J., et al., Eds., Heidelberg: Springer, 2005, pp. 1–17.

    Chapter  Google Scholar 

  • Stanley, R.G., Pollen Chemistry and Tube Growth, in Pollen: Development and Physiology, Heslop-Harrison J., Ed., London: Butterworths, 1971, pp. 131–155.

    Google Scholar 

  • Sze, H., Li, X., and Palmgren, M.G., Energization of Plant Cell Membranes by H+-Pumping ATPases: Regulation and Biosynthesis, Plant Cell, 1999, vol. 11, pp. 677–689.

    Article  PubMed  CAS  Google Scholar 

  • Sze, H., Frietsch, S., Li, X., et al., Genomic and Molecular Analyses of Transporters in the Male Gametophyte, in The Pollen Tube, Malho, R., Ed., Heidelberg: Springer-Verlag, 2006.

    Google Scholar 

  • Taiz, L. and Zeiger, L., Plant Physiology, Sunderland: Sinauer, 2006.

    Google Scholar 

  • Verkman, A.S., Sellers, M.C., Chao, A.C., et al., Synthesis and Characterization of Improved Chloride-Sensitive Fluorescent Indicators for Biological Applications, Anal. Biochem., 1989, vol. 178, pp. 355–361.

    Article  PubMed  CAS  Google Scholar 

  • Weisenseel, M.H. and Jaffe, L.F., The Major Growth Current through Lily Pollen Tubes Enters as K+ and Leaves as H+, Planta, 1976, vol. 133, pp. 1–7.

    Article  Google Scholar 

  • Weisenseel, M.H. and Wenisch, H.H., The Membrane Potential of Growing Lily Pollen, Z. Pflanzenphysiol., 1980, vol. 99, pp. 313–323.

    CAS  Google Scholar 

  • Woll, E., Gschwentner, M., Furst, J., et al., Fluorescence-Optical Measurements of Chloride Movements in Cells Using the Membrane-Permeable Dye diH-MEQ, Eur. J. Physiol., 1996, vol. 432, pp. 486–493.

    Article  CAS  Google Scholar 

  • Zonia, L., Cordeiro, S., Tupy, J., et al., Oscillatory Chloride Efflux at the Pollen Tube Apex Has a Role in Growth and Cell Volume Regulation and Is Targeted by Inositol 3,4,5,6- Tetrakisphosphate, Plant Cell, 2002, vol. 14, pp. 2233–2249.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Breygina.

Additional information

Original Russian Text © M.A. Breygina, N.P. Matveeva, I.P. Ermakov, 2009, published in Ontogenez, 2009, Vol. 39, No. 3, pp. 199–207.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breygina, M.A., Matveeva, N.P. & Ermakov, I.P. The role of Cl in pollen germination and tube growth. Russ J Dev Biol 40, 157–164 (2009). https://doi.org/10.1134/S1062360409030047

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360409030047

Key words

Navigation