Skip to main content
Log in

Methyl Jasmonate’s Role in Alleviating Salt Stress-Induced Challenges in Narcissus Growth

  • PLANT PHYSIOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

High soil salinity, a result of salt stress, poses a significant obstacle to crop cultivation, particularly for ornamental plants like narcissus. Plant growth regulators, such as methyl jasmonate (MeJA), have the potential to mitigate the impact of stressful conditions. This study involved different MeJA concentrations (0, 50, 100, and 200 µM) and varying levels of salt stress (4 and 8 dS m–1), along with a control level, in a pot experiment conducted using a complete randomized block design with three replicates at the Research Greenhouse, Islamic Azad University, Isfahan (Khorasgan) Branch. The research revealed that salt stress led to a substantial increase in leaf proline and flavonoid levels, as well as electrolyte leakage (EL), hydrogen peroxide (H2O2), malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD) enzymatic activities. These increases were more pronounced when MeJA was applied concurrently with a decrease in EL, H2O2, and MDA. Conversely, salt stress was observed to reduce chlorophyll and carotenoid levels, relative water content (RWC), flower fresh weight, flower longevity on the plant, and flowering duration. This underscores MeJA’s potential as a growth regulator that safeguards narcissus against salinity toxicity. The findings indicate that 100 µM MeJA activates an effective mechanism to mitigate the adverse effects of salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Abeer, H., Abd-Allah, E.F., Alqarawi, A.A., and Egamberdieva, D., Induction of salt stress tolerance in cowpea (Vigna unguiculata (L.) Walp.) by arbuscular mycorrhizal fungi, Legume Res., 2015, vol. 38, pp. 579–588. https://doi.org/10.18805/lr.v38i5.5933

    Article  Google Scholar 

  2. Aebi, H., Catalase in vitro, Methods Enzymol., 1984, vol. 105, pp. 121–126. https://doi.org/10.1016/s0076-6879(84)05016-3

    Article  CAS  PubMed  Google Scholar 

  3. Ahmad, P., Rasool, S., Gul, A., Sheikh, S.A., Akram, N.A., Ashraf, M., Kazi, A.M., and Gucel, S., Jasmonates: multifunctional roles in stress tolerance, Front. Plant Sci., 2016, vol. 7, p. 813. https://doi.org/10.3389/fpls.2016.00813

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ahmadi, F.I., Karimi, K., and Struik, P.C., Effect of exogenous application of methyl jasmonate on physiological and biochemical characteristics of Brassica napus L. cv. Talaye under salinity stress, S. Afr. J. Bot., 2018, vol. 115, pp. 5–11. https://doi.org/10.1016/j.sajb.2017.11.018

    Article  CAS  Google Scholar 

  5. Akula, R. and Ravishankar, G.A., Influence of abiotic stress signals on secondary metabolites in plants, Plant Signal. Behav., 2011, vol. 6, pp. 1720–1731. https://doi.org/10.4161/psb.6.11.17613

    Article  CAS  Google Scholar 

  6. Arnon, I., Copper enzymes in isolated chloroplasts. Polyphenol-oxidase in Beta vulgaris, Plant Physiol., 1949, vol. 24, pp. 1–15. https://doi.org/10.1104/pp.24.1.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Banchio, E., Bogino, P.C., Zygadlo, J., and Giordano, W., Plant growth promoting rhizobacteria improves growth and essential oil yield in Origanum majorana L., Biochem. Syst. Ecol., 2008, vol. 36, pp. 766–771. https://doi.org/10.1016/j.bse.2008.08.006

    Article  CAS  Google Scholar 

  8. Bates, L.S., Waldren, R.P., and Teare, I.D., Rapid determination of free proline for water stress studies, Plant Soil, 1973, vol. 39, pp. 205–207. https://doi.org/10.1007/BF00018060

    Article  CAS  Google Scholar 

  9. Brossa, R., López-Carbonell, M., Jubany-Marí, T., and Alegre, L., Interplay between abscisic acid and jasmonic acid and its role in water-oxidative stress in wild-type, ABA-deficient, JA deficient and ascorbate-deficient Arabidopsis plants, J. Plant Growth Regul., 2011, vol. 30, pp. 322–333. https://doi.org/10.1007/s00344-011-9194-z

    Article  CAS  Google Scholar 

  10. Emamverdian, A., Ghorbani, A., Li, Y., Pehlivan, N., Barker, J., Ding, Y., Liu, G., and Zargar, M., Responsible mechanisms for the restriction of heavy metal toxicity in plants via the co-foliar spraying of nanoparticles, Agronomy, 2023a, vol. 13, p. 1748. https://doi.org/10.3390/agronomy13071748

    Article  CAS  Google Scholar 

  11. Emamverdian, A., Ghorbani, A., Pehlivan, N., Alwahibi, M.S., Elshikh, M.S., Liu, G., Li, Y., Barker, J., Zargar, M., and Chen, M., Co-application of melatonin and zeolite boost bamboo tolerance under cadmium by enhancing antioxidant capacity, osmolyte accumulation, plant nutrient availability, and decreasing cadmium absorption, Sci. Hortic., 2023b, vol. 322, p. 112433. https://doi.org/10.1016/j.scienta.2023.112433

    Article  CAS  Google Scholar 

  12. Faghih, S., Zarei, A., and Ghobadi, C., Positive effects of plant growth regulators on physiology responses of Fragaria × ananassa cv. ‘Camarosa’ under salt stress, Int. J. Fruit Sci., 2019, vol. 19, pp. 104–114. https://doi.org/10.1080/15538362.2018.1462291

    Article  Google Scholar 

  13. Farhangi-Abriz, S. and Ghassemi-Golezani, K., Jasmonates: mechanisms and functions in abiotic stress tolerance of plants, Biocatal. Agric. Biotechnol., 2019, vol. 20, p. 101210. https://doi.org/10.1016/j.bcab.2019.101210

    Article  Google Scholar 

  14. Fazeli, M. and Naderi, D., Effects of 6-benzylaminopurine and salinity stress on flowering and biochemical characteristics of winter jasmine (Jasminum nudiflorum L.), J. Ornam. Hortic., 2019, vol. 9, pp. 41–53. https://doi.org/20.1001.1.22516433.2019.9.1.5.8

    Google Scholar 

  15. Ghaffari, H., Tadayon, M.R., Bahador, M., and Razmjoo, J., Investigation of the proline role in controlling traits related to sugar and root yield of sugar beet under water deficit conditions, Agric. Water Manage., 2021, vol. 243, p. 106448. https://doi.org/10.1016/j.agwat.2020.106448

    Article  Google Scholar 

  16. Ghaffari, H., Tadayon, M.R., Razmjoo, J., Bahador, M., Karimzadeh Soureshjani, H., and Yuan, T., Impact of jasmonic acid on sugar yield and physiological traits of sugar beet in response to water deficit regimes: using stepwise regression approach, Russ. J. Plant Physiol., 2020, vol. 67, pp. 482–493. https://doi.org/10.1134/S1021443720030097

    Article  CAS  Google Scholar 

  17. Ghasemi-Omran, V.O., Ghorbani, A., and Sajjadi-Otaghsara, S.A., Melatonin alleviates NaCl-induced damage by regulating ionic homeostasis, antioxidant system, redox homeostasis, and expression of steviol glycosides-related biosynthetic genes in in vitro cultured Stevia rebaudiana Bertoni, In Vitro Cell Dev. Biol. Plant, 2021, vol. 57, pp. 319–331. https://doi.org/10.1134/S1021443718060079

    Article  CAS  Google Scholar 

  18. Ghorbani, A., Razavi, S.M., Ghasemi Omran, V.O., Pirdashti, H., Piriformospora indica alleviates salinity by boosting redox poise and antioxidative potential of tomato, Russ. J. Plant Physiol., 2018a, vol. 65, pp. 898–907. https://doi.org/10.1134/S1021443718060079

    Article  CAS  Google Scholar 

  19. Ghorbani, A., Razavi, S.M., Ghasemi Omran, V.O., Pirdashti, H., Piriformospora indica inoculation alleviates the adverse effect of NaCl stress on growth, gas exchange and chlorophyll fluorescence in tomato (Solanum lycopersicum L.), Plant Biol., 2018b, vol. 20, pp. 729–736. https://doi.org/10.1111/plb.12717

    Article  CAS  PubMed  Google Scholar 

  20. Ghorbani, A., Ghasemi Omran, V.O., Razavi, S.M., Pirdashti, H., and Ranjbar, M., Piriformospora indica confers salinity tolerance on tomato (Lycopersicon esculentum Mill.) through amelioration of nutrient accumulation, K+/Na+ homeostasis and water status, Plant Cell Rep., 2019, vol. 38, pp. 1151–1163. https://doi.org/10.1007/s00299-019-02434-w

    Article  CAS  PubMed  Google Scholar 

  21. Ghorbani, A., Tafteh, M., Roudbari, N., Pishkar, L., Zhang, W., Wu, C., Piriformospora indica augments arsenic tolerance in rice (Oryza sativa) by immobilizing arsenic in roots and improving iron translocation to shoots, Ecotoxicol. Environ. Saf., 2020, vol. 209, p. 111793. https://doi.org/10.1134/S1021443718060079

    Article  PubMed  Google Scholar 

  22. Ghorbani, A., Pishkar, L., Roodbari, N., Pehlivan, N., and Wu, C., Nitric oxide could allay arsenic phytotoxicity in tomato (Solanum lycopersicum L.) by modulating photosynthetic pigments, phytochelatin metabolism, molecular redox status and arsenic sequestration, Plant Physiol. Biochem., 2021, vol. 167, pp. 337–348. https://doi.org/10.1134/S1021443718060079

    Article  CAS  PubMed  Google Scholar 

  23. Ghorbani, A., Emamverdian, A., Pishkar, L., Chashmi, K.A., Salavati, J., Zargar, M., and Chen, M., Melatonin-mediated nitric oxide signaling enhances adaptation of tomato plants to aluminum stress, S. Afr. J. Bot., 2023a, vol. 162, pp. 443–450. https://doi.org/10.1016/j.sajb.2023.09.031

    Article  CAS  Google Scholar 

  24. Ghorbani, A., Ghasemi-Omran, V.O., and Chen, M., The effect of glycine betaine on nitrogen and polyamine metabolisms, expression of glycoside-related biosynthetic enzymes, and K/Na balance of stevia under salt stress, Plants, 2023b, vol. 12, p. 1628. https://doi.org/10.3390/plants12081628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ghorbani, A., Pishkar, L., Roodbari, N., Ali Tavakoli, S., Moein Jahromi, E., and Chu, W., Nitrate reductase is needed for methyl jasmonate-mediated arsenic toxicity tolerance of rice by modulating the antioxidant defense system, glyoxalase system and arsenic sequestration mechanism, J. Plant Growth. Regul., 2023c, vol. 42, pp. 1107–1119. https://doi.org/10.1007/s00344-022-10616-2

    Article  CAS  Google Scholar 

  26. Ghorbani, A., Pishkar, L., Saravi, K.V., and Chen, M.X., Melatonin-mediated endogenous nitric oxide coordinately boosts stability through proline and nitrogen metabolism, antioxidant capacity, and Na+/K+ transporters in tomato under NaCl stress, Front. Plant Sci., 2023d, vol. 14, p. 1135943. https://doi.org/10.3389/fpls.2023.1135943

    Article  PubMed  PubMed Central  Google Scholar 

  27. Giannopolitis, C.N., and Ries, S.K., Superoxide dismutase. I. Occurrence in higher plants, Plant Physiol., 1977, vol. 59, pp. 309–314. https://doi.org/10.1104/pp.59.2.309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gururani, M.A., Venkatesh, J., and Tran, L.S.P., Regulation of photosynthesis during abiotic stress-induced photoinhibition, Mol. Plant, 2015, vol. 8, pp. 1304–1320. https://doi.org/10.1016/j.molp.2015.05.005

    Article  CAS  PubMed  Google Scholar 

  29. Haeri Moghaddam, N., Hashamdar, S., Hamblin, M.R., and Ramezani, F., Effects of electrospun nanofibers on motor function recovery after spinal cord injury: a systematic review and meta-analysis, World Neurosurg., 2023, vol. 181, pp. 96–106. https://doi.org/10.1016/j.wneu.2023.10.065

    Article  PubMed  Google Scholar 

  30. Hajisoltani, R., Taghizadeh, M., Hamblin, M.R., and Ramezani, F., Could conditioned medium be used instead of stem cell transplantation to repair spinal cord injury in animal models? Identifying knowledge gaps, J. Neuropathol. Exp. Neurol., 2023, vol. 82, pp. 753–759. https://doi.org/10.1093/jnen/nlad053

    Article  PubMed  Google Scholar 

  31. Hashamdar, S., Parviz, P., Mayahi, S., Rahimi, B., Refahizadeh, M., and Ramezani, F., Micro texturing and laser irradiation, two stimulus of growth and differentiation to neural like cell on the PMMA polymer, Int. J. Polym. Mater. Polym. Biomater., 2023. https://doi.org/10.1080/00914037.2023.2282994

  32. He, M.Y., Ren, T.X., Jin, Z.D., Deng, L., Liu, H.J., Cheng, Y.Y., Li, Z.Y., Liu, X.X., Yang, Y., and Chang, H., Precise analysis of potassium isotopic composition in plant materials by multi-collector inductively coupled plasma mass spectrometry, Spectrochim. Acta, Part B, 2023, vol. 209, p. 106781. https://doi.org/10.1016/j.sab.2023.106781

    Article  CAS  Google Scholar 

  33. Hniličková, H., Hnilička, F., Orsák, M., and Hejnák, V., Effect of salt stress on growth, electrolyte leakage, Na+ and K+ content in selected plant species, Plant Soil Environ., 2019, vol. 65, pp. 90–96. https://doi.org/10.17221/620/2018-PSE

    Article  Google Scholar 

  34. Horvath, E., Szalai, G., and Janda, T., Induction of abiotic stress tolerance by salicylic acid signaling, Plant Growth Regul., 2007, vol. 26, pp. 290–300. https://doi.org/10.1007/s00344-007-9017-4

    Article  CAS  Google Scholar 

  35. Isayenkov, S.V. and Maathuis, F.J.M., Plant salinity stress: many unanswered questions remain, Front. Plant Sci., 2019, vol. 10, p. 80. https://doi.org/10.3389/fpls.2019.00080

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kaur, N., Dhawan, M., Sharma, I., and Pati, P.K., Interdependency of reactive oxygen species generating and scavenging system in salt sensitive and salt tolerant cultivars of rice, BMC Plant Biol., 2016, vol. 16, p. 131. https://doi.org/10.1186/s12870-016-0824-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kthiri, Z., Hammami, M.D.E., Marzougui, O., Jabeur, M.B., Aouadi, A., Karmous, C., and Hamada, W., Salt stress effects on the growth, photosynthesis and antioxidant enzyme activities in maize (Zea mays L.) cultivars, Environ. Sci. Proc., 2022, vol. 16, p. 73. https://doi.org/10.3390/environsciproc2022016073

    Article  Google Scholar 

  38. Ku, K.M. and Juvik, J.A., Environmental stress and methyl jasmonate-mediated changes in flavonoid concentrations and antioxidant activity in broccoli florets and kale leaf tissues, HortScience, 2013, vol. 48, pp. 996–1002. https://doi.org/10.21273/HORTSCI.48.8.996

    Article  CAS  Google Scholar 

  39. Li, H., Zhu, Y., Hu, Y., Han, W., and Gong, H., Beneficial effects of silicon in alleviating salinity stress of tomato seedlings grown under sand culture, Acta Physiol. Plant., 2015, vol. 37, p. 71. https://doi.org/10.1007/s11738-015-1818-7

    Article  CAS  Google Scholar 

  40. Li, M., Xia, Q., Lv, S., Tong, J., Wang, Z., Nie, Q., and Yang, J., Enhanced CO2 capture for photosynthetic lycopene production in engineered Rhodopseudomonas palustris, a purple nonsulfur bacterium, Green Chem., 2022, vol. 24, pp. 7500–7518. https://doi.org/10.1039/D2GC02467E

    Article  CAS  Google Scholar 

  41. Li, Y., Mo, X., Xiong, J., Huang, K., Zheng, M., Jiang, Q., Su, G., Ou, Q., Pan, H., and Jiang, C., Deciphering the probiotic properties and safety assessment of a novel multi-stress-tolerant aromatic yeast Pichia kudriavzevii HJ2 from marine mangroves, Food Biosci., 2023, vol. 56, p. 103248. https://doi.org/10.1016/j.fbio.2023.103248

    Article  CAS  Google Scholar 

  42. Lichtenthaler, H., Chlorophylls and carotenoids: pigments of photosynthetic biomembranes, Methods Enzymol., 1987, vol. 148, pp. 350–382. https://doi.org/10.1016/0076-6879(87)48036-1

    Article  CAS  Google Scholar 

  43. Lu, L., Zhai, X., Li, X., Wang, S., Zhang, L., Wang, L., Jin, X., Liang, L., Deng, Z., Li, Z., Wang, Y., Fu, X., Hu, H., Wang, J., Mei, Z., He, Z., and Wang, F., Met1-specific motifs conserved in OTUB subfamily of green plants enable rice OTUB1 to hydrolyse Met1 ubiquitin chains, Nat. Commun., 2022, vol. 13, p. 4672. https://doi.org/10.1038/s41467-022-32364-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Madhava Rao, K.V. and Sresty, T.V.S., Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses, Plant Sci., 2000, vol. 157, pp. 113–128. https://doi.org/10.1016/S0168-9452(00)00273-9

    Article  CAS  Google Scholar 

  45. Meguekam, T.L., Moualeu, D.P., Taffouo, V.D., and Stützel, H., Changes in plant growth, leaf relative water content and physiological traits in response to salt stress in peanut (Arachis hypogaea L.) varieties, Not. Bot. Horti Agrobot. Cluj-Napoca, 2021, vol. 49, p. 12049. https://doi.org/10.15835/nbha49112049

    Article  CAS  Google Scholar 

  46. Nakano, Y. and Asada, K., Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts, Plant Cell Physiol., 1981, vol. 22, pp. 867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232

    Article  CAS  Google Scholar 

  47. Norastehnia, A. and Nojavan-Asghari, M., Effect of methyl jasmonate on the enzymatic antioxidant defense system in maize seedling subjected to paraquat, Asian. J. Plant. Sci., 2006, vol. 5, pp. 17–23. https://doi.org/10.3923/ajps.2006.17.23

    Article  CAS  Google Scholar 

  48. Ramezani, M., Enayati, M., Ramezani, M., and Ghorbani, A., A study of different strategical views into heavy metal (oid) removal in the environment, Arab. J. Geosci., 2021, vol. 14, p. 2225. https://doi.org/10.1134/S1021443718060079

    Article  CAS  Google Scholar 

  49. Ranjbar, M., Khakdan, F., Ghorbani, A., Zargar, M., and Chen, M., The variations in gene expression of GAPDH in Ocimum basilicum cultivars under drought-induced stress conditions, Environ. Sci. Pollut. Res., 2023, vol. 30, pp. 119187–119203. https://doi.org/10.1007/s11356-023-30549-x

    Article  CAS  Google Scholar 

  50. Rohwer, C.L. and Erwin, J.E., Horticultural applications of jasmonates: a review, J. Hort. Sci. Biotechnol., 2008, vol. 83, pp. 283–304. https://doi.org/10.1080/14620316.2008.11512381

    Article  CAS  Google Scholar 

  51. Sewedan, E., Osman, A.R., and Moubarak, M., Effect of methyl jasmonate and salicylic acid on the production of Gladiolus grandifloras L., Nat. Sci., 2018, vol. 16, pp. 40–47. https://doi.org/10.7537/marsnsj160618.07

    Article  Google Scholar 

  52. Shahmoradi, H. and Naderi, D., Improving effects of salicylic acid on morphological, physiological and biochemical responses of salt-imposed winter jasmine, Int. J. Hort. Sci. Technol., 2018, vol. 5, pp. 219–230. https://doi.org/10.22059/ijhst.2018.259507.246

    Article  CAS  Google Scholar 

  53. Shaki, F., Ebrahimzadeh Maboud, H., and Niknam, V., Growth enhancement and salt tolerance of Safflower (Carthamus tinctorius L.) by salicylic acid, Curr. Plant Biol., 2018, vol. 13, pp. 16–22. https://doi.org/10.1016/j.cpb.2018.04.001

    Article  Google Scholar 

  54. Siddiqi, K.S. and Husen, A., Plant response to jasmonates: current developments and their role in changing environment, Bull. Natl. Res. Cent., 2019, vol. 43, p. 153. https://doi.org/10.1186/s42269-019-0195-6

    Article  Google Scholar 

  55. Singh, M., Kumar, J., Singh, S., Singh, V.P., and Prasad, S.M., Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review, Rev. Environ. Sci. Bio-l., 2015, vol. 14, pp. 407–426. https://doi.org/10.1007/s11157-015-9372-8

    Article  CAS  Google Scholar 

  56. Sofy, M.R., Seleiman, M.F., Alhammad, B.A., Alharbi, B.M., and Mohamed, H.I., Minimizing adverse effects of Pb on maize plants by combined treatment with jasmonic, salicylic acids and proline, Agronomy, 2020, vol. 10, p. 699. https://doi.org/10.3390/agronomy10050699

    Article  CAS  Google Scholar 

  57. Srivastava, T.P., Gupta, S.C., Lal, P., Muralia, P.N., and Kumar, A., Effect of salt stress on physiological and biochemical parameters of wheat, Ann. Arid Zone, 1988, vol. 27, pp. 197–204. https://doi.org/10.1371/journal.pone.0282606

    Article  CAS  Google Scholar 

  58. Stevens, J., Senaratna, T., and Sivasithamparam, K., Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. Roma): associated changes in gas exchange, water relations and membrane stabilization, Plant Growth Regul., 2006, vol. 49, pp. 77–83. https://doi.org/10.1007/s10725-006-0019-1

    Article  CAS  Google Scholar 

  59. Taïbi, K., Taïbi, F., Ait Abderrahim, L., Ennajah, A., Belkhodja, M., and Mulet, J.M., Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L., S. Afr. J. Bot., 2016, vol. 105, pp. 306–312. https://doi.org/10.1016/j.sajb.2016.03.011

    Article  CAS  Google Scholar 

  60. Talebi, M., Moghaddam, M., and Pirbalouti, A.G., Methyl jasmonate effects on volatile oil compounds and antioxidant activity of leaf extract of two basil cultivars under salinity stress, Acta Physiol. Plant., 2018, vol. 40, p. 34. https://doi.org/10.1007/s11738-018-2611-1

    Article  CAS  Google Scholar 

  61. Thiruvengadam, M., Baskar, V., Kim, S.H., and Chung, I.M., Effects of abscisic acid, jasmonic acid and salicylic acid on the content of phytochemicals and their gene expression profiles and biological activity in turnip (Brassica rapa ssp. rapa), Plant Growth Regul., 2016, vol. 80, pp. 377–390. https://doi.org/10.1007/s10725-016-0178-7

    Article  CAS  Google Scholar 

  62. Valentovic, P., Luxova, M., Kolarovic, L., and Gasparikova, O., Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars, Plant Soil Environ., 2006, vol. 52, pp. 186–191. https://doi.org/10.17221/3364-PSE

    Article  Google Scholar 

  63. Veatch-Blohm, M.E., Sawch, D., Elia, N., and Pinciotti, D., Salinity tolerance of three commonly planted narcissus cultivars, HortScience, 2014, vol. 49, pp. 1158–1164. https://doi.org/10.1016/j.scienta.2019.01.001

    Article  CAS  Google Scholar 

  64. Wang, W.Y., Yan, X.F., Jiang, Y., Qu, B., and Xu, Y.F., Effects of salt stress on water content and photosynthetic characteristics in Iris lactea var. chinensis seedlings, Middle East J. Sci. Res., 2012, vol. 12, pp. 70–74. https://doi.org/10.5829/idosi.mejsr.2012.12.1.1660

    Article  CAS  Google Scholar 

  65. Wang, J., Qiao, Q., and Tao, J., The physiological response of three narcissus pseudonarcissus under NaCl stress, Am. J. Plant Sci., 2019, vol. 10, pp. 447–461. https://doi.org/10.4236/ajps.2019.103032

    Article  CAS  Google Scholar 

  66. Wang, M., Zhang, R., Wu, Z., and Xiao, X., Flexible wireless in situ optical sensing system for banana ripening monitoring, J Food Process Eng., 2023, p. e14474. https://doi.org/10.1111/jfpe.14474

  67. Wu, C., Qu, J., Liu, L., Kang, H., Sun, H., Zhang, Y., Ghorbani, A., and Pehlivan, N., Quo vadis: signaling molecules and small secreted proteins from mycorrhizal fungi at the early stage of mycorrhiza formation, Symbiosis, 2021, vol. 85, pp. 123–143. https://doi.org/10.1007/s13199-021-00793-1

    Article  CAS  Google Scholar 

  68. Xu, X., Xu, H., Wang, Y., Wang, X., Qiu, Y., and Xu, B., The effect of salt stress on the chlorophyll level of the main sand-binding plants in the shelterbelt along the Tarim Desert Highway, Chin. Sci. Bull., 2008, vol. 53, pp. 109–111. https://doi.org/10.1007/s11434-008-6012-5

    Article  CAS  Google Scholar 

  69. Xu, Z., Pehlivan, N., Ghorbani, A., and Wu, C., Effects of Azorhizobium caulinodans and Piriformospora indica co-inoculation on growth and fruit quality of tomato (Solanum lycopersicum L.) under salt stress, Horticulturae, 2022, vol. 8, p. 302. https://doi.org/10.3390/horticulturae8040302

    Article  Google Scholar 

  70. Xue, Y., Bai, X., Zhao, C., Tan, Q., Li, Y., Luo, G., Wu, L., Chen, F., Li, C., Ran, C., Zhang, S., Liu, M., Gong, S., Xiong, L., Song, F., Du, C., Xiao, B., Li, Z., and Long, M., Spring photosynthetic phenology of Chinese vegetation in response to climate change and its impact on net primary productivity, Agric. For. Meteorol., 2023, vol. 342, p. 109734. https://doi.org/10.1016/j.agrformet.2023.109734

    Article  Google Scholar 

  71. Yastreb, T.O., Kolupaev, Y.E., Lugovaya, A.A., and Dmitriev, A.P., Content of osmolytes and flavonoids under salt stress in Arabidopsis thaliana plants defective in jasmonate signaling, Appl. Biochem. Microbiol., 2016, vol. 52, pp. 210–215. https://doi.org/10.1134/S0003683816020186

    Article  CAS  Google Scholar 

  72. Yu, C.W., Murphy, T.M., and Lin, C.H., Hydrogen peroxide induces chilling tolerance in mung beans mediated through ABA-independent glutathione accumulation, Funct. Plant Biol., 2003, vol. 30, pp. 955–963. https://doi.org/10.1071/FP03091

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We appreciate Islamic Azad University for supporting this research project.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct thisparticular research were obtained.

Author information

Authors and Affiliations

Authors

Contributions

R.T.D. carried out the greenhouse work, collected data and samples, performed laboratory and chemical analyses, and prepared the first draft of the manuscript. D.N. and S.K. helped in designing the experiment, reviewing and improving the manuscript. H.A.G. and M.G.J. helped in designing the experiment and more vigorously reviewing and improving the manuscript.

Corresponding author

Correspondence to Davood Naderi.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raha Tabrizi Dooz, Naderi, D., Kalatehjari, S. et al. Methyl Jasmonate’s Role in Alleviating Salt Stress-Induced Challenges in Narcissus Growth. Biol Bull Russ Acad Sci (2024). https://doi.org/10.1134/S1062359023605694

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1062359023605694

Keywords:

Navigation