Skip to main content
Log in

Effect of Stearic Acid on the Efficiency of Cryopreservation of Embryos of the Domestic Cat (Felis silvestris catus)

  • ZOOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

This work is aimed at studying the effect of saturated stearic acid (SA) under in vitro culture conditions on the embryos of the domestic cat (Felis silvestris catus) and at estimating how a change in the composition of intracellular lipids is reflected in the results of cryopreservation. The addition of SA to the culture medium had no effect on the development of cat embryos in vitro before cryopreservation. There were also no changes by the total amount of lipids in the embryos after the effect of SA. Meanwhile, the degree of lipid unsaturation was reduced in the embryos after in vitro cultivation with SA. Moreover, the temperature of lipid phase transition onset (T*) was higher in the embryos exposed to the effect of SA as compared with the control. A decrease in the efficiency of embryo cryopreservation during the cultivation with SA was associated with a decrease in the degree of unsaturation of intracellular lipids and a increase in T *. The results can be important for the conservation of genetic resources of the species from the subfamily Felinae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Aardema, H., Bertijn, I., van Tol., H., Rijneveld, A., Vernooij, J., Gadella, B.M., and Vos, P., Fatty acid supplementation during in vitro embryo production determines cryosurvival characteristics of bovine blastocysts, Front. Cell. Dev. Biol., 2022, vol. 10, p. 837405. https://doi.org/10.3389/fcell.2022.837405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Abe, H., Yamashita, S., Satoh, T., and Hoshi, H., Accumulation of cytoplasmic lipid droplets in bovine embryos and cryotolerance of embryos developed in different culture systems using serum-free or serum-containing media, Mol. Reprod. Dev., 2002, vol. 61, pp. 57–66. https://doi.org/10.1002/mrd.1131

    Article  CAS  PubMed  Google Scholar 

  3. Amstislavsky, S.Ya., Mokrousova, V.I., Kozhevnikova, V.V., Kizilova, E.A., Brusentsev, E.Yu., Okotrub, K.A., Naprimerov, V.A., and Naidenko, S.V., Cryobank of feline genetic resources, Vavilov. Zh. Genet. Selekt., 2017, vol. 21, no. 5, pp. 561–568. https://doi.org/10.18699/10.18699/VJ17.27-o

    Article  Google Scholar 

  4. Amstislavsky, S., Brusentsev, E., Kizilova, E., Mokrousova, V., Kozhevnikova, V., Abramova, T., Rozhkova, I., and Naidenko, S., Sperm cryopreservation in the far-eastern wildcat (Prionailurus bengalensis euptilurus), Reprod. Domest. Anim., 2018, vol. 53, pp. 1219–1226. https://doi.org/10.1111/rda.13230

    Article  CAS  PubMed  Google Scholar 

  5. Amstislavsky, S., Mokrousova, V., Brusentsev, E., Okotrub, K., and Comizzoli, P., Influence of cellular lipids on cryopreservation of mammalian oocytes and preimplantation embryos: a review, Biopreserv. Biobanking, 2019, vol. 17, pp. 76–83. https://doi.org/10.1089/bio.2018.0039

    Article  CAS  Google Scholar 

  6. Barrera, N., Dos, Santos., Neto, P.C., Cuadro, F., Bosolasco, D., Mulet, A.P., Crispo, M., and Menchaca, A., Impact of delipidated estrous sheep serum supplementation on in vitro maturation, cryotolerance and endoplasmic reticulum stress gene expression of sheep oocytes, PLoS One, 2018, vol. 13, p. e0198742. https://doi.org/10.1371/journal.pone.0198742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Borges, E. and Vireque, A., Updating the impact of lipid metabolism modulation and lipidomic profiling on oocyte cryopreservation, EMJ, 2019, vol. 4, pp. 79–87. https://doi.org/10.33590/emj/10310074

    Article  Google Scholar 

  8. Brusentsev, E., Kizilova, E., Mokrousova, V., Kozhevnikova, V., Rozhkova, I., and Amstislavsky, S., Characteristics and fertility of domestic cat epididymal spermatozoa cryopreserved with two different freezing media, Theriogenology, 2018, vol. 110, pp. 148–152. https://doi.org/10.1016/j.theriogenology.2017.12.038

    Article  CAS  PubMed  Google Scholar 

  9. Cecchele, A., Cermisoni, G., Giacomini, E., Pinna, M., and Vigano, P., Cellular and molecular nature of fragmentation of human embryos, Int. J. Mol. Sci., 2022, vol. 23, p. 1349. https://doi.org/10.3390/ijms23031349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Crichton, E., Bedows, E., Miller-Lindholm, A., Baldwin, D.M., Armstrong, D.L., Graham, L.H., Ford, J.J., Gjorret, J.O., Hyttel, P., Pope, C.E., Vajta, G., and Loskutoff, N.M., Efficacy of porcine gonadotropins for repeated stimulation of ovarian activity for oocyte retrieval and in vitro embryo production and cryopreservation in Siberian tigers (Panthera tigris altaica), Biol. Reprod., 2003, vol. 68, pp. 105–113. https://doi.org/10.1095/biolreprod.101.002204

    Article  CAS  PubMed  Google Scholar 

  11. Desmet, K.L., van Hoeck, V., Gagne, D., Fournier, E., Thakur, A., O’Doherty, A.M., Walsh, C.P., Sirard, M.A., Bols, P.E., and Leroy, J.L., Exposure of bovine oocytes and embryos to elevated non-esterified fatty acid concentrations: integration of epigenetic and transcriptomic signatures in resultant blastocysts, BMC Genomics, 2016, vol. 17, p. 1004. https://doi.org/10.1186/s12864-016-3366-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fayezi, S., Leroy, J., Ghaffari, NovinM., and Darabi, M., Oleic acid in the modulation of oocyte and preimplantation embryo development, Zygote, 2018, vol. 26, pp. 1–13. https://doi.org/10.1017/S0967199417000582

    Article  CAS  PubMed  Google Scholar 

  13. Galiguis, J., Gomez, M., Leibo, S., and Pope, C., Birth of a domestic cat kitten produced by vitrification of lipid polarized in vitro matured oocytes, Cryobiology, 2014, vol. 68, pp. 459–466. https://doi.org/10.1016/j.cryobiol.2014.02.012

    Article  CAS  PubMed  Google Scholar 

  14. Genicot, G., Leroy, J., van Soom, A., and Donnay, I., The use of a fluorescent dye Nile red to evaluate the lipid content of single mammalian oocytes, Theriogenology, 2005, vol. 63, pp. 1181–1194. https://doi.org/10.1111/j.1439-0531.2004.00556.x

    Article  CAS  PubMed  Google Scholar 

  15. Haggarty, P., Wood, M., Ferguson, E., Hoad, G., Srikantharajah, A., Milne, E., Hamilton, M., and Bhattacharya, S., Fatty acid metabolism in human preimplantation embryos, Hum. Reprod., 2006, vol. 21, pp. 766–773. https://doi.org/10.1093/humrep/dei385

    Article  CAS  PubMed  Google Scholar 

  16. van Hoeck, V., Sturmey, R., Bermejo-Alvarez, P., Rizos, D., Gutierrez-Adan, A., Leese, H.J., Bols, P.E., and Leroy, J.L., Elevated non-esterified fatty acid concentrations during bovine oocyte maturation compromise early embryo physiology, PLoS One, 2011, vol. 6, p. e23183. https://doi.org/10.1371/journal.pone.0023183

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Idrissi, S., Bourhis, D., Lefevre, A., Emond, P., Le Berre, L., Desnoes, O., Joly, T., Buff, S., Maillard, V., Schibler, L., Salvetti, P., and Elis, S., Lipid profile of bovine grade-1 blastocysts produced either in vivo or in vitro before and after slow freezing process, Sci. Rep., 2021, vol. 11, p. 11618. https://doi.org/10.1038/s41598-021-90870-8

    Article  ADS  CAS  Google Scholar 

  18. Igonina, T., Okotrub, K., Brusentsev, E., Chuyko, E.A., Ragaeva, D.S., Ranneva, S.V., and Amstislavsky, S.Y., Alteration of the lipid phase transition during mouse embryos freezing after in vitro culture with linoleic acid, Cryobiology, 2021, vol. 99, pp. 55–63. https://doi.org/10.1016/j.cryobiol.2021.01.014

    Article  CAS  PubMed  Google Scholar 

  19. IUCN Red List of Threatened Species, IUCN, 2021. https://www.iucnredlist.org/search?taxonomies=101738& searchType=species.

  20. Karasahin, T., The effect of oleic and linoleic acid addition to the culture media on bovine embryonic development following vitrification, Pol. J. Vet. Sci., 2019, vol. 22, pp. 661–666. https://doi.org/10.24425/pjvs.2019.129978

    Article  CAS  PubMed  Google Scholar 

  21. Kochan, J., Nowak, A., Mlodawska, W., Prochowska, S., Partyka, A., Skotnicki, J., and Nizanski, W., Comparison of the morphology and developmental potential of oocytes obtained from prepubertal and adult domestic and wild cats, Animals, 2021, vol. 11, p. 20. https://doi.org/10.3390/ani11010020

    Article  Google Scholar 

  22. Lawson, E.F., Grupen, C.G., Baker, M.A., Aitken, R.J., Swegen, A., Pollard, C.L., and Gibb, Z., Conception and early pregnancy in the mare: lipidomics the unexplored frontier, Reprod. Fertil., 2022, vol. 3, pp. R1–R18. https://doi.org/10.1530/RAF-21-0104

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mazur, P., Equilibrium, quasiequilibrium, and nonequilibrium freezing of mammalian embryos, Cell. Biophys., 1990, vol. 17, pp. 53–92. https://doi.org/10.1007/BF02989804

    Article  CAS  PubMed  Google Scholar 

  24. Mokrousova, V., Okotrub, K., Amstislavsky, S., and Surovtsev, N., Raman spectroscopy evidence of lipid separation in domestic cat oocytes during freezing, Cryobiology, 2020a, vol. 95, pp. 177–182. https://doi.org/10.1016/j.cryobiol.2020.03.005

    Article  CAS  PubMed  Google Scholar 

  25. Mokrousova, V., Okotrub, K., Brusentsev, E., Kizilova, E.A., Surovtsev, N.V., and Amstislavsky, S.Y., Effects of slow freezing and vitrification on embryo development in domestic cat, Reprod. Dom. Anim., 2020b, vol. 55, pp. 1328–1336.https://doi.org/10.1111/rda.13776

    Article  CAS  Google Scholar 

  26. Nagashima, H., Kashiwazaki, N., Ashman, R., Grupen, C.G., and Nottle, M.B., Cryopreservation of porcine embryos, Nature, 1995, vol. 374, p. 416. https://doi.org/10.1038/374416a0

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Nonogaki, T., Noda, Y., Goto, Y., Kishi, J., and Mori, T., Developmental blockage of mouse embryos caused by fatty acids, J. Assist. Reprod. Genet., 1994, vol. 11, pp. 482–488. https://doi.org/10.1007/BF02215713

    Article  CAS  PubMed  Google Scholar 

  28. Ohata, K., Ezoe, K., Miki, T., Kouraba, S., Fujiwara, N., Yabuuchi, A., Kobayashi, T., and Kato, K., Effects of fatty acid supplementation during vitrification and warming on the developmental competence of mouse, bovine and human oocytes and embryos, Reprod. Biomed. Online, 2021, vol. 43, pp. 14–25. https://doi.org/10.1016/j.rbmo.2021.03.022

    Article  CAS  PubMed  Google Scholar 

  29. Okotrub, K., Mokrousova, V., Amstislavsky, S., and Surovtsev, N., Lipid droplet phase transition in freezing cat embryos and oocytes probed by Raman spectroscopy, Biophys. J., 2018, vol. 115, pp. 577–587. https://doi.org/10.1016/j.bpj.2018.06.019

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Okotrub, K., Okotrub, S., Mokrousova, V., Amstislavsky, S.Y., and Surovtsev, N.V., Lipid phase transitions in cat oocytes supplemented with deuterated fatty acids, Biophys. J., 2021, vol. 120, pp. 5619–5630. https://doi.org/10.1016/j.bpj.2021.11.008

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Okotrub, S.V., Lebedeva, D.A., Okotrub, K.A., Chuiko, E.A., Brusentsev, E.Yu., Rakhmanova, T.A., and Amstislavsky, S.Ya., Effects of linoleic acid on cryopreservation of IVF-obtained domestic cat embryos, Russ. J. Dev. Biol., 2022, vol. 53, no. 5, pp. 321–332. https://doi.org/10.1134/S106236042205006X

    Article  CAS  Google Scholar 

  32. Pawlak, P., Malyszka, N., Szczerbal, I., and Kolodziejski, P., Fatty acid induced lipolysis influences embryo development, gene expression and lipid droplet formation in the porcine cumulus cells, Biol. Reprod., 2020, vol. 103, pp. 36–48. https://doi.org/10.1093/biolre/ioaa045

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ranneva, S., Okotrub, K., Amstislavsky, S., and Surovtsev, N., Deuterated stearic acid uptake and accumulation in lipid droplets of cat oocytes, Arch. Biochem. Biophys., 2020, vol. 692, p. 108532. https://doi.org/10.1016/j.abb.2020.108532

    Article  CAS  PubMed  Google Scholar 

  34. Renard, J.P. and Babinet, C., High survival of mouse embryos after rapid freezing and thawing inside plastic straws with 1-2 propanediol as cryoprotectant, J. Exp. Zool., 1984, vol. 230, pp. 443–448. https://doi.org/10.1002/jez.1402300313

    Article  CAS  PubMed  Google Scholar 

  35. Roth, T., Swanson, W., and Wildt, D., Developmental competence of domestic cat embryos fertilized in vivo versus in vitro, Biol. Reprod., 1994, vol. 51, pp. 441–451. https://doi.org/10.1095/biolreprod51.3.441

    Article  CAS  PubMed  Google Scholar 

  36. Shehab-El-Deen, M., Leroy, J., Maes, D., and van Soom, A., Cryotolerance of bovine blastocysts is affected by oocyte maturation in media containing palmitic or stearic acid, Reprod. Domest. Anim., 2009, vol. 44, pp. 140–142. https://doi.org/10.1111/j.1439-0531.2008.01084.x

    Article  CAS  PubMed  Google Scholar 

  37. Swanson, W.F., Roth, T.L., and Wildt, D.E., In vivo embryogenesis, embryo migration, and embryonic mortality in the domestic cat, Biol. Reprod., 1994, vol. 51, pp. 452–464. https://doi.org/10.1095/biolreprod51.3.452

    Article  CAS  PubMed  Google Scholar 

  38. Yousif, M., Calder, M., Du, J., Ruetz, K.N., Crocker, K., Urquhart, B.L., Betts, D.H., Rafea, B.A., and Watson, A.J., Oleic acid counters impaired blastocyst development induced by palmitic acid during mouse preimplantation development: understanding obesity-related declines in fertility, Reprod. Sci., 2020, vol. 27, pp. 2038–2051. https://doi.org/10.1007/s43032-020-00223-5

    Article  CAS  PubMed  Google Scholar 

  39. Zahmel, J., Jansch, S., Jewgenow, K., Sandgreen, D.M., Skalborg Simonsen, K., and Colombo, M., Maturation and fertilization of African lion (Panthera leo) oocytes after vitrification, Cryobiology, 2021, vol. 98, pp. 146–151. https://doi.org/10.1016/j.cryobiol.2020.11.011

    Article  CAS  PubMed  Google Scholar 

  40. Zeron, Y., Sklan, D., and Arav, A., Effect of polyunsaturated fatty acid supplementation on biophysical parameters and chilling sensitivity of ewe oocytes, Mol. Reprod. Dev., 2002, vol. 61, pp. 271–278. https://doi.org/10.1002/mrd.1156

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

Microscopic studies were carried out at the Microscopic Analysis of Biological Objects Center for Collective Use, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences.

Funding

This work was supported by the Russian Science Foundation (project no. 21-74-10108) using the equipment of the Center for Genetic Resources of Laboratory Animals Center for Collective Use, Federal Research Center, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, supported by the Ministry of Science and Higher Education of Russia (Unique identifier of the project RFMEFI62119X0023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ya. Amstislavsky.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

All studies were in accordance with the European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes (ETS no. 123). The study was approved by the Bioethics Committee (protocol No. 144 dated March 29, 2023).

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by A. Barkhash

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brusentsev, E.Y., Okotrub, S.V., Lebedeva, D.A. et al. Effect of Stearic Acid on the Efficiency of Cryopreservation of Embryos of the Domestic Cat (Felis silvestris catus). Biol Bull Russ Acad Sci 51, 139–151 (2024). https://doi.org/10.1134/S1062359023602811

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359023602811

Keywords:

Navigation