Skip to main content
Log in

Determination of Biocontrol Properties of Two Local Trichoderma Isolates

  • MICROBIOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Many plant pathogens, especially Rhizoctonia solani, Pythium spp. and Alternaria spp. can seriously affect seedling growth and crop production. Trichoderma is recognized as a suitable biological plant protection product because of its capability to enhance the plant’s nutrient utilization, foster plant growth, and prevent plant pathogens. The aim of the study was to investigate the effects of Trichoderma on bean growth and the reduction of disease severity by forming experimental groups in pot application. The ability of Trichoderma strains to grow in different salinity ranges and their effects on germination success when applied to different seeds were also tested. In the study, Trichoderma harzianum ID11D (T. harzianum ID11D) alone and Trichoderma atroviride ID20G (T. atroviride ID20G) alone were applied to bean seedlings infected with R. solani. It was found that bean plants inoculated with pathogens in pots treated with T. harzianum ID11D had better data and biomass than the untreated control with Trichoderma inoculated with R. solani. In the pot experiment, it was found that the number of root hairs and the fresh and dry weights of roots increased and the disease effect decreased in the bean plant groups inoculated with the T. harzianum ID11D. Application of T. atroviride ID20G only of the pot group resulted in an increase in the wet and dry weight of the stem. Based on the results of our study, Trichoderma strains were found to have beneficial effects that may be of interest for the development of commercial products containing Trichoderma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Akarca, Z., Erzincan ilinde fasulye bitkilerinin toprak üstü aksamlarından izole edilen Rhizoctonia türlerinin anastomosis grupları ve patojenitesi, Yüksek Lisans Tezi, Atatürk Üniversitesi, Fen Bilimleri Enstitüsü, Erzurum, 2013.

  2. Akıncı, S. and Çalışkan, Ü., Effect of lead on seed germination and tolerance levels in some summer vegetables, Ekoloji, 2010, vol. 19, no. 74, pp. 164–172.

    Article  Google Scholar 

  3. Asaduzzaman, M., Alam, M.J., and Islam, M.M., Effect of Trichoderma on seed germination and seedling parameters of Chili. J. Sci. Found., 2010, vol. 8, nos. 1–2, pp. 141–150. https://doi.org/10.3329/jsf.v8i1-2.14637

  4. Bal, U. and Altintas, S., Application of the antagonistic fungus Trichoderma harzianum (TrichoFlow WP(tm)) to root zone increases yield of bell peppers grown in soil, Biol. Agric. Hortic., 2012, vol. 24, no. 2, pp. 149–163. https://doi.org/10.1080/01448765.2006.9755016

    Article  Google Scholar 

  5. Ban, G., Akanda, S., and Maino, M., The effect of Trichoderma on the growth and development of tomato and bean under greenhouse and field conditions, ATR, 2018, vol. 40, no. 1, pp. 35–45. https://doi.org/10.32945/atr4013.2018

    Article  Google Scholar 

  6. Berg, G., Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture, Appl. Microb. Biotechnol., 2009, vol. 84, pp. 11–18. https://doi.org/10.1007/s00253-009-2092-7

    Article  CAS  Google Scholar 

  7. Bhardwaj, N. and Kumar, J., Characterization of volatile secondary metabolites from Trichoderma asperellum, J. Appl. Nat. Sci., 2017, vol. 9, pp. 954–959. https://doi.org/10.31018/jans.v9i2.1303

    Article  Google Scholar 

  8. Çam, S. and Küçük, Ç., The effect of salinity on growth, antagonistic potential, protease activity, and proline content of Trichoderma harzianum, Commagene J. Biol., 2020, vol. 4, no. 1, pp. 62—66. https://doi.org/10.31594/commagene.738313

    Article  Google Scholar 

  9. Celar, F. and Valic, N., Effects of Trichoderma spp. and Gliocladium roseum culture filtrates on seed germination of vegetables and maize, Zeitschrift Fur Pflanzenkrankheiten Und Pflanzenschutz—J. Plant Dis. Prot., 2005, vol. 112, pp. 343–350.

    Google Scholar 

  10. Conner, R.L., Hou, A., Balasubramanian, P., et al., Reaction of dry bean cultivars grown in western Canada to root rot inoculation, Can. J. Plant Sci., 2014, vol. 94, no. 7, pp. 1219–1230.

    Article  Google Scholar 

  11. Contreras-Cornejo, H.A., Macías-Rodríguez, L., Cortés-Penagos, C., and López-Bucio, J., Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis, Plant Physiol., 2009, vol. 149, pp. 1579–1592. https://doi.org/10.1104/pp.108.130369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Costa-Coelho, G.R., Café Filho, A.C., and Lobo, M., Jr., A comparison of web blight epidemics on common bean cultivars with different growth habits, Crop Protect, 2014, vol. 55, pp. 16–20. https://doi.org/10.1016/j.cropro.2013.10.006

    Article  Google Scholar 

  13. Dalzotto, L., Tortelli, B., Spitza, F., et al., Creole bean seeds microbiolization with doses of Trichoderma harzianum, Ciênc. Rural, 2020, vol. 50, e20190542. https://doi.org/10.1590/0103-8478cr20190542

    Article  CAS  Google Scholar 

  14. De Jensen, E.C., Etiology and control of Dry bean root rot in Minnesota. INIAP Archivo Historico. Santa Catalina Minnesota: Faculty of the Graduate School of the University of Minnesota, 2000.

  15. Durmus, N., Yesilyurt, A.M., Pehlivan, N., and Karaoglu, S.A., Salt stress resilience potential of a fungal inoculant isolated from tea cultivation area in maize, Biologia, 2017, vol. 72, pp. 619–627. https://doi.org/10.1515/biolog-2017-0068

    Article  CAS  Google Scholar 

  16. Ertekin, D.Ç., Çaliş, Ö., and Yanar, Y., Orta Karadeniz Bölgesi’nde Pseudomonas savastanoi pv. phaseolicola ve Xanthomonas axonopodis pv. phaseoli’nin izolasyonu ve tanılanması, Mediterr. Agric. Sci., 2021, vol. 34, no. 1, pp. 25–32.

    Google Scholar 

  17. FAOSTAT. Gıda ve tarım örgütü. 2018, http://www.fao.org/faostat/en/#data/QC. Accessed January 3, 2019.

  18. Galvez, G.E., Mora, B., and Pastor-Corrales, M.A., Web blight, in Bean Production Problems in the Tropics, Schwartz, H.F., Pastor-Corrales, M.A., Еds., Cali, Colombia, 1989, pp. 195–259. CIAT.

  19. Goettel, M.S. and Inglis, D.G., Fungi: Hyphomycetes, in Manual of Techniques in Insect Pathology, Lacey, L.A., Еd., Academic Press, London, 1997, pp. 213–249.

    Google Scholar 

  20. Gossen, B.D., Conner, R.L., Chang, K.F., et al., Identifying and managing root rot of pulses on the northern great plains, Plant Dis., 2016, vol. 100, no. 10, pp. 1965–1978. https://doi.org/10.1094/PDIS-02-16-0184-FE

    Article  PubMed  Google Scholar 

  21. Hall, R., Bean diseases, bean pathogens, bean disease control, Compendium of Bean Diseases, APS press, Minnesota, 1994.

  22. Harman, G.E., Howell, C.R., Viterbo, A., et al., Trichoderma species-opportunistic, avirulent plant symbionts, Nature Rev. Microbiol., 2004, vol. 2, no. 1, pp. 43–56. https://doi.org/10.1038/nrmicro797

    Article  CAS  Google Scholar 

  23. Harman, G.E., Overview of mechanisms and uses of Trichoderma spp., Phytopathology, 2006, vol. 96, no. 2, pp. 190–194. https://doi.org/10.1094/PHYTO-96-0190

    Article  CAS  PubMed  Google Scholar 

  24. Howard, R.J., Garland, J.A., and Seaman, W.L., Diseases and pests of vegatable crops in Canada, The Canadian Phytopathological Society, Canada, 1994.

  25. Hoyos-Carvajal, L., Orduz, S., and Bissett, J., Growth stimulation in bean (Phaseolus vulgaris L.) by Trichoderma. Biological Cont., 2009, vol. 51, pp. 409–416. https://doi.org/10.1016/j.biocontrol.2009.07.018

    Article  Google Scholar 

  26. Inbar, J., Abramsky, M., and Cohen, D., Plant growth enhancement and disease control by Trichoderma harzianum in vegetable seedlings grown under commercial conditions, Eur. J. Plant Pathol., 1994, vol. 100, pp. 337–346. https://doi.org/10.1007/BF01876444

    Article  Google Scholar 

  27. Karaca, G.H., Ozkoc, I., and Erper, I., Determination of the anastomosis grouping and virulence of Rhizoctonia solani Kühn isolates associated with bean plants grown in Samsun/Turkey, Pak. J. Biol. Sci., 2002, vol. 5, no. 4, pp. 434–437. https://scialert.net/abstract/?doi=pjbs.2002.434.437.

    Article  Google Scholar 

  28. Karaoğlu Ş.A., and Ülker, S., Isolation, identification and seasonal distribution of soilborne fungi in tea growing areas of Iyidere-Ikizdere vicinity (Rize-Turkey), J. Basic Microbiol., 2006, vol. 46, pp. 208–218. https://doi.org/10.1002/jobm.200510030

    Article  PubMed  Google Scholar 

  29. Karaoğlu, Ş.A., Bozdeveci, A., and Pehlivan Gedik, N., Characterization of local Trichoderma spp. as potential biocontrol agents, screening of in-vitro antagonistic activities and fungisit tolerance, Hacettepe J. Biol&Chem., 2018, vol. 46, no. 2, pp. 247–261.

    Article  Google Scholar 

  30. Kashyap, P.L., Solanki, M.K., Kushwaha, P., et al., Biocontrol potential of salt-tolerant Trichoderma and Hypocrea isolates for the management of tomato root rot under saline environment. J. Soil Sci. Plant Nutr., 2020, vol. 20, pp. 160–176. https://doi.org/10.1007/s42729-019-00114-y

    Article  CAS  Google Scholar 

  31. Kaveh, H., Jartoodeh, S.V., Aruee, H., and Mazhabi, M., Would Trichoderma affect seed -germination and seedling quality of two muskmelon cultivars, Khatooni and Qasri and increase their transplanting success?, J. Biol. Environ. Sci., 2011, vol. 5, no. 15, pp. 169–175.

    Google Scholar 

  32. Keen, B.A. and Raczkowski, H., Clay contents and certain physical properties of soil, J. Agric. Sci., 1992, vol. 11, pp. 441–449.

    Article  Google Scholar 

  33. Khodae, M. and Hemmati, R., Evaluation of Trichoderma isolates for biological control of Rhizoctonia root rot of bean in Zanjan, J. Iranian Plant Protect. Res., 2016, vol. 29, no. 4, pp. 471–480. https://doi.org/10.22067/jpp.v29i4.20619

    Article  Google Scholar 

  34. Kırbağ, S. and Turan, N., The determination of microfungi on some vegetables cultuvated in Malatya, Sci. and Eng. J. of Fırat Univ., 2006, vol. 8, no. 2, pp. 159–164.

    Google Scholar 

  35. Koch, E., Zink, P., Pfeiffer, T., et al., Artificial inoculation methods for testing microorganisms as control agents of seed-and soil-borne Fusarium-seedling blight of maize, J. Plant Dis. Prot., 2020, vol. 127, pp. 883–893. https://doi.org/10.1007/s41348-020-00350-w

    Article  Google Scholar 

  36. Kredics, L., Antal, Z., and Manczinger, L., Influence of water potential on growth, enzyme secretion and in vitro enzyme activities of Trichoderma harzianum at different temperatures, Current Microbiol., 2000, vol. 40, pp. 310–314. https://doi.org/10.1007/s002849910062

    Article  CAS  PubMed  Google Scholar 

  37. Kredics, L., Antal, Z., Manczinger, L., et al., Influence of environmental parameters on Trichoderma strains with biocontrol potential, Food Technol. Biotechnol., 2003, vol. 41, no. 1. https://hrcak.srce.hr/110938.

  38. Kubicek, C.P. and Harman, G.E., Trichoderma and Gliocladium, vol. 1: Basic Biology, Taxonomy and Genetics, Taylor and Francis Ltd., 1998.

  39. Küçük, Ç. and Kivanç, M., Isolation of Trichoderma spp. and determination of their antifungal, biochemical and physiological features, Turk. J. Biol., 2003, vol. 27, no. 4, pp. 247–253.

    Google Scholar 

  40. Kumar, K., Manigundan, K., and Amaresan, N., Influence of salt tolerant Trichoderma spp. on growth of maize (Zea mays) under different salinity conditions, J. Basic Microbial., 2017, vol. 57, no. 2, pp. 141–150. https://doi.org/10.1002/jobm.201600369

    Article  CAS  Google Scholar 

  41. Marfori, E.C., Kajiyama, S., Fukusaki, E., and Kobayashi, A., Trichosetin, a novel tetramic acid antibiotic produced in dual culture of Trichoderma harzianum and Catharanthus roseus callus, Z. Naturforsch. C J. Biosci., 2002, vol. 57, pp. 465–470. https://doi.org/10.1515/znc-2002-5-611

    Article  CAS  PubMed  Google Scholar 

  42. Mayo, S., Gutiérrez, S., Malmierca, M.G., et al., Influence of Rhizoctonia solani and Trichoderma spp. in growth of bean (Phaseolus vulgaris L.) and in the induction of plant defense-related genes, Front. Plant Sci., 2015, vol. 6, p. 685. https://doi.org/10.3389/fpls.2015.00685

    Article  PubMed Central  PubMed  Google Scholar 

  43. Mihuta-Grimm, L. and Rowe, R.C., Trichoderma spp. as biocontrol agents of Rhizoctonia damping-off of radish in organic soil and comparison of four delivery systems, Phytopatology, 1986, vol. 76, no. 3, pp. 306–311.

    Article  Google Scholar 

  44. Muyolo, N.G., Lipps, P.E., and Schmitthenner, A.F., Anastomosis grouping and variation in virulance among isolates of Rhizoctonia solani associated with dry bean and soybean in Ohio and Zaire, Phytopathology, 1993, vol. 83, pp. 438–444.

    Article  Google Scholar 

  45. Nieto-Jacobo, M.F., Steyaert, J.M., Salazar-Badillo, F.B., et al., Environmental growth conditions of Trichoderma spp. affects indole acetic acid derivatives, volatile organic compounds, and plant growth promotion, Front. Plant Sci., 2017, vol. 8, p. 102. https://doi.org/10.3389/fpls.2017.00102

    Article  PubMed Central  PubMed  Google Scholar 

  46. Okoth, S.A., Otadoh, J.A., and Ochanda, J.O., Improved seedling emergence and growth of maize and beans by Trichoderma harzianum, Trop. Subtrop. Agroecosyt., 2011, vol. 13, no. 1, pp. 65–71.

    Google Scholar 

  47. Ousley, M.A., Lynch, J.M., and Whipps, J.M., Effect of Trichoderma on plant-growth—a balance between inhibition and growth promotion, Microb. Ecol., 1993, vol. 26, pp. 277–285. https://doi.org/10.1007/BF00176959

    Article  CAS  PubMed  Google Scholar 

  48. Papavizas, G.C., Lewis, J.A., and Abdelmoity, T.H., Evaluation of new biotypes of Trichoderma harzianum for tolerance to benomyl and enhanced biocontrol capabilities, Phytopathology, 1982, vol. 72, no. 1, pp. 126–132. https://doi.org/10.1094/Phyto-72-126

    Article  CAS  Google Scholar 

  49. Parveen, S., Wani, A.H., and Bhat, M.Y., Effect of culture filtrates of pathogenic and antagonistic fungi on seed germination of some economically important vegetables, Braz. J. Biol. Sci., 2019. vol. 6, no. 12, pp. 133–139.

    Article  Google Scholar 

  50. Peña, P.A., Steadman, J.R., Eskridge, K.M., and Urrea, C.A., Identification of sources of resistance to damping-off and early root/hypocotyl damage from Rhizoctonia solani in common bean (Phaseolus vulgaris L.), Crop Protect., 2013, vol. 54, pp. 92–99. https://doi.org/10.1016/j.cropro.2013.04.014

    Article  Google Scholar 

  51. Rawat, L., Bisht, T., Upadhayay, R., and Kukreti, A., Trichoderma harzianum enhancing plant growth parameters and reducing deleterious effects of natural saline-sodic soil in rice, Int. J. Tropical Agricul., 2016, vol. 34, no. 6, pp. 1855–1867.

    Google Scholar 

  52. Reino, J.L., Guerrero, R.F., Hernández-Galán, R., and Collado, I.G., Secondary metabolites from species of the biocontrol agent Trichoderma, Phytochem. Rev., 2008, vol. 7, pp. 89–123. https://doi.org/10.1007/s11101-006-9032-2

    Article  CAS  Google Scholar 

  53. Sneh, B. and Ichievlevich-Auster, M., Induced resistance of cucumber seedlings caused by some non-pathogenic Rhizoctonia (np-R) isolates, Phytoparasitica, 1998, vol. 26, no. 1, pp. 27–38. https://doi.org/10.1007/BF02981263

    Article  Google Scholar 

  54. Tančić-Živanov, S., Medić-Pap, S., Danojević, D., and Prvulović, D., Effect of Trichoderma spp. on growth promotion and antioxidative activity of pepper seedlings, Braz. Arch. Biol. Technol., 2020, p. 63. https://doi.org/10.1590/1678-4324-2020180659

  55. Vinale, F., Flematti, G., Sivasithamparam, K., Lorito, M., Marra, R., Skelton, B.W., and Ghisalberti, E.L., Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum, J. Nat. Prod., 2009, vol. 72, no. 11, pp. 2032–2035. https://doi.org/10.1021/np900548p

    Article  CAS  PubMed  Google Scholar 

  56. Vural, Ç. and Soylu, S., Prevalence and incidence of fungal disease agents affecting bean (Phaseolus vulgaris L.) plants, Res. Crops, 2012, vol. 13, pp. 634–640.

    Google Scholar 

  57. Wahane, M.R., Meshram, N.A., More, S.S., and Khobragade, N.H., Biofertilizer and their role in sustainable agriculture—a review, Pharma Innov. J., 2020, vol. 9, no. 7, pp. 127–130.

    CAS  Google Scholar 

  58. Yedidia, I., Srivastva, A.K., Kapulnik, Y., and Chet, I., Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants, Plant Soil, 2001, vol. 235, no. 2, pp. 235–242. http:// www.jstor.org/stable/42951359.

    Article  CAS  Google Scholar 

  59. Yeşil, S., Konya İli fasulye ekim alanlarındaki fitopatolojik sorunların tespiti ve tanılanması, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Konya: Selçuk Üniversitesi, 2007.

    Google Scholar 

  60. Yeşilyurt, A.M., Pehlivan, N., Durmuş, N., and Karaoğlu, S.A., Trichoderma citrinoviride: a potent biopriming agent for the alleviation of salt stress in maize, Hacettepe J. Biol. Chem., 2018, vol. 46, no. 1, pp. 101–111.

    Article  Google Scholar 

  61. Yıldırım, E. and Erper, I., Characterization and pathogenicity of Rhizoctonia spp. isolated from vegetable crops grown in greenhouses in Samsun province, Turkey, Biosci. J., 2017, vol. 33, no. 2, pp. 257–267. https://hdl.handle.net/20.500.12712/12560

    Google Scholar 

  62. Zhang, C., Wang, W., Hu, Y., et al., A novel salt-tolerant strain Trichoderma atroviride HN082102.1 isolated from marine habitat alleviates salt stress and diminishes cucumber root rot caused by Fusarium oxysporum, BMC Microbiol., 2022, vol. 22, no. 1, p. 67. https://doi.org/10.1186/s12866-022-02479-0

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Zin, N.A. and Badaluddin, N.A., Biological functions of Trichoderma spp. for agriculture applications, Ann. Agricul. Sci., 2020, vol. 65, no. 2, pp. 168–178. https://doi.org/10.1016/j.aoas.2020.09.003

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Mr. Erkol Demirci (Karadeniz Technical University, Türkiye) for allowing us to use the Rhizoctonia solani (AG-4) isolate.

Funding

This study was supported by the Scientific Research Fund of Recep Tayyip Erdoğan University with the project number FEN-BAP2012.102.03.3. The authors thank the Recep Tayyip Erdoğan University Scientific Research Fund for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Arif Bozdeveci, Şengül Alpay Karaoğlu; Methodology: Arif Bozdeveci, Şengül Alpay Karaoğlu; Formal analysis and investigation: Arif Bozdeveci, Şengül Alpay Karaoğlu; Writing—original draft preparation: Arif Bozdeveci, Şengül Alpay Karaoğlu; Writing– review and editing: Arif Bozdeveci, Şengül Alpay Karaoğlu; Funding acquisition: Şengül Alpay Karaoğlu; Supervision: Şengül Alpay Karaoğlu.

Corresponding author

Correspondence to Ş. A. Karaoğlu.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozdeveci, A., Karaoğlu, Ş.A. Determination of Biocontrol Properties of Two Local Trichoderma Isolates. Biol Bull Russ Acad Sci 50, 1172–1181 (2023). https://doi.org/10.1134/S1062359023602057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359023602057

Keywords:

Navigation