Skip to main content
Log in

Evaluation of the Influence of Multiple Paternity on the Immune Status of Syrian Hamster (Mesocricetus auratus, Rodentia, Cricetidae) Young

  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The effect of multiple paternity on the development of the humoral immune response in Syrian hamster pups was studied. The paternity type was found to be determined by ten microsatellite markers. Pups were immunized with T-dependent antigens (fissurella hemocyanin, KLH) at 33 days of age, with the level of specific antibodies (anti-KLH IgG) measured in blood samples at 5, 10, 20, and 25 days after immunization. As much as 24% of pups from multiple paternity broods and 25% from single paternity broods were revealed to develop no immune response. At the same time, in all pups that responded to immunization, the level of anti-KLH IgG significantly increased over time, starting with the 5th day after immunization. However, there were no significant differences in the concentration of anti-KLH IgG in the blood serum of pups derived from broods with multiple paternity or from litters obtained from one male. Therefore, our results fail to support the hypothesis that multiple paternity enhances the immunity of Syrian hamster pups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Abolins, S.R., Pocock, M.J., Hafalla, J.C., Riley, E.M., and Viney, M.E., Measures of immune function of wild mice, Mus musculus, Mol. Ecol., 2011, vol. 20, no. 5, pp. 881–892.

    Article  CAS  PubMed  Google Scholar 

  2. Batova, O.N., Vasilieva, N.A., Titov, S.V., Savinetskaya, L.E., and Tchabovsky, A.V., Female polyandry dilutes inbreeding in a solitary fast-living hibernator, Behav. Ecol. Sociobiol., 2021, vol. 75, no. 10, pp. 1–13.

    Article  Google Scholar 

  3. Bergeron, P., Reale, D., Humphries, M.M., and Garant, D., Evidence of multiple paternity and mate selection for inbreeding avoidance in wild eastern chipmunks, J. Evol. Bio-l., 2011, vol. 24, no. 8, pp. 1685–1694.

    Article  CAS  Google Scholar 

  4. Birkhead, T., Promiscuity: An Evolutionary History of Sperm Competition and Sexual Conflict, Harvard Univ. Press, 2000.

    Google Scholar 

  5. Birkhead, T.R., Moller, A.P., and Sutherland, W.J., Why do females make it so difficult for males to fertilize their eggs?, J. Theor. Biol., 1993, vol. 161, no. 1, pp. 51–60.

    Article  Google Scholar 

  6. Burns-Naas, L.A., Hastings, K.L., Ladics, G.S., Makris, S.L., Parker, G.A., and Holsapple, M.P., What’s so special about the developing immune system?, Int. J. Toxicol., 2008, vol. 27, no. 2, pp. 223–254.

    Article  PubMed  Google Scholar 

  7. Clayton, D.H., The influence of parasites on host sexual selection, Parasitol. Today, 1991, vol. 7, pp. 329–334.

    Article  CAS  PubMed  Google Scholar 

  8. Clemens, L. and Witcher, J., Sexual differentiation and development, in The Hamster: Reproduction and Behavior, New York: Plenum, 1985, pp. 155–171.

    Google Scholar 

  9. Demas, G.E., Splenic denervation blocks leptin-induced enhancement of humoral immunity in Siberian hamsters (Phodopus sungorus), Neuroendocrinology, 2002, vol. 76, no. 3, pp. 178–184.

    Article  CAS  PubMed  Google Scholar 

  10. Dietert, R.R. and Holsapple, M.P., Methodologies for developmental immunotoxicity (DIT) testing, Methods, 2007, vol. 41, no. 1, pp. 123–131.

    Article  CAS  PubMed  Google Scholar 

  11. Drazen, D.L., Kriegsfeld, L.J., Schneider, J.E., and Nelson, R.J., Leptin, but not immune function, is linked to reproductive responsiveness to photoperiod, Am. J. Physiol., 2000, vol. 278, no. 6, pp. R1401–R1407.

    CAS  Google Scholar 

  12. Drazen, D.L., Demas, G.E., and Nelson, R.J., Leptin effects on immune function and energy balance are photoperiod dependent in Siberian hamsters (Phodopus sungorus), Endocrinology, 2001, vol. 142, no. 7, pp. 2768–2775.

    Article  CAS  PubMed  Google Scholar 

  13. Dugdale, H.L., Macdonald, D.W., Pope, L.C., and Burke, T., Polygynandry, extra-group paternity and multiple-paternity litters in European badger (Meles meles) social groups, Mol. Ecol., 2007, vol. 16, no. 24, pp. 5294–5306.

    Article  PubMed  Google Scholar 

  14. Dunn, P.O., Lifjeld, J.T., and Whittingham, L.A., Multiple paternity and offspring quality in tree swallows, Behav. Ecol. Sociobiol., 2009, vol. 63, no. 6, pp. 911–922.

    Article  Google Scholar 

  15. Firman, R.C. and Simmons, L.W., Polyandry, sperm competition, and reproductive success in mice, Behav. Ecol., 2008, vol. 19, pp. 695–702.

    Article  Google Scholar 

  16. Fisher, D.O., Double, M.C., Blomberg, S.P., Jennions, M.D., and Cockburn, A., Post-mating sexual selection increases lifetime fitness of polyandrous females in the wild, Nature, 2006, vol. 444, no. 7115, pp. 89–92.

    Article  CAS  PubMed  Google Scholar 

  17. Foerster, K., Delhey, K., Johnsen, A., Lifjeld, J.T., and Kempenaers, B., Females increase offspring heterozygosity and fitness through extra-pair matings, Nature, 2003, vol. 425, no. 6959, pp. 714–717.

    Article  CAS  PubMed  Google Scholar 

  18. Fritzsche, P., Neumann, K., Nasdal, K., and Gattermann, R., Differences in reproductive success between laboratory and wild-derived golden hamsters (Mesocricetus auratus) as a consequence of inbreeding, Behav. Ecol. Sociobiol., 2006, vol. 60, no. 2, pp. 220–226.

    Article  Google Scholar 

  19. Garant, D., Dodson, J.J., and Bernatchez, L., Offspring genetic diversity increases fitness of female Atlantic salmon (Salmo salar), Behav. Ecol. Sociobiol., 2005, vol. 57, no. 3, pp. 240–244.

    Article  Google Scholar 

  20. Gromov, V.S., Prostranstvenno-etologicheskaya struktura populyatsii gryzunov (Spatial and Ethological Structure of Rodent Populations), Moscow: KMK, 2008.

  21. Gromov, V.S., Evolyutsiya sotsial’nosti u mlekopitayushchikh (The Evolution of Sociality in Mammals), Moscow: KMK, 2017.

  22. Gromov, V.S. and Osadchuk, L.V., Parental care and testosterone secretion in forest rodent males: sensitization and androgenic stimulation of parental behavior, Biol. Bull. (Moscow), 2015, vol. 42, no. 4, pp. 354–360.

    Article  CAS  Google Scholar 

  23. Hamilton, W.D. and Zuk, M., Heritable true fitness and bright birds: a role for parasites, Science, 1982, vol. 218, pp. 384–387.

    Article  CAS  PubMed  Google Scholar 

  24. Heimann, M., Käsermann, H.P., Pfister, R., Roth, D.R., and Bürki, K., Blood collection from the sublingual vein in mice and hamsters: a suitable alternative to retrobulbar technique that provides large volumes and minimizes tissue damage, Lab. Anim., 2009, vol. 43, no. 3, pp. 255–260.

    Article  CAS  PubMed  Google Scholar 

  25. Holsapple, M.P., West, L.J., and Landreth, K.S., Species comparison of anatomical and functional immune system development, Birth Defects Res., Part B, 2003, vol. 68, no. 4, pp. 321–334.

    CAS  Google Scholar 

  26. Hoogland, J.L., Why do female Gunnison’s prairie dogs copulate with more than one male?, Anim. Behav., 1998, vol. 55, no. 2, pp. 351–359.

    Article  CAS  PubMed  Google Scholar 

  27. Huchard, E. and Canale, C.I., Le Gros, C., Perret, M., Henry, P.Y., and Kappeler, P.M., Convenience polyandry or convenience polygyny? Costly sex under female control in a promiscuous primate, Proc. R. Soc. London, Ser. B, 2012, vol. 279, no. 1732, pp. 1371–1379.

  28. Huck, U.W., Quinn, R.P., and Lisk, R.D., Determinants of mating success in the golden hamster (Mesocricetus auratus) IV. Sperm competition, Behav. Ecol. Sociobiol., 1985, vol. 17, no. 3, pp. 239–252.

    Article  Google Scholar 

  29. Jennions, M.D. and Petrie, M., Why do females mate multiply? A review of the genetic benefits, Biol. Rev., Cambr. Phil. Soc., 2000, vol. 75, no. 1, pp. 21–64.

    Article  CAS  Google Scholar 

  30. Keil, A. and Sachser, N., Reproductive benefits from female promiscuous mating in a small mammal, Ethology, 1998, vol. 104, pp. 897–903.

    Article  Google Scholar 

  31. Keller, L. and Reeve, H.K., Why do females mate with multiple males? The sexually selected sperm hypothesis, Adv. Study Behav., 1995, vol. 24, pp. 291–315.

    Article  Google Scholar 

  32. Klemme, I. and Ylönen, H., Polyandry enhances offspring survival in an infanticidal species, Biol. Lett., 2010, vol. 6, no. 1, pp. 24–26.

    Article  PubMed  Google Scholar 

  33. Kozielska, M., Krzemińska, A., and Radwan, J., Good genes and the maternal effects of polyandry on offspring reproductive success in the bulb mite, Proc. R. Soc. London, Ser. B, 2004, vol. 271, no. 1535, pp. 165–170.

    Article  Google Scholar 

  34. Krajnak, K., Manzanares, J., Lookingland, K.J., and Nunez, A.A., Gender differences in tuberoinfundibular dopaminergic neuronal activity in a photoperiodic rodent (Mesocricetus auratus), Brain Res., 1994, vol. 634, pp. 159–162.

    Article  CAS  PubMed  Google Scholar 

  35. Kuper, C.F., van Bilsen, J., Cnossen, H., Houben, G., Garthoff, J., and Wolterbeek, A., Development of immune organs and functioning in humans and test animals: implications for immune intervention studies, Reprod. Toxicol., 2016, vol. 64, pp. 180–190.

    Article  CAS  PubMed  Google Scholar 

  36. Kuznetsova, E.V., Ecological and physiological adaptations of representatives of the subfamily Cricetinae to autumn–winter conditions, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow: Inst. Probl. Ekol. Evol. im. A.N. Severtsova Ross. Akad. Nauk, 2019.

  37. Lisk, R.D., The estrous cycle, in The Hamster, Boston, MA: Springer, 1985, pp. 23–51.

    Google Scholar 

  38. Madsen, T., Shine, R., Loman, J., and Hakansson, T., Why do female adders copulate so frequently?, Nature, 1992, vol. 355, no. 6359, pp. 440–441.

    Article  Google Scholar 

  39. Murphy, M.R., History of the capture and domestication of the Syrian golden hamster (Mesocricetus auratus Waterhouse), in The Hamster, Boston, MA: Springer, 1985, pp. 3–20.

    Google Scholar 

  40. Murphy, M.R., Intraspecific sexual preferences of female hamsters, J. Comp. Physiol. Psychology, 1977, vol. 91, no. 6, pp. 1337–1346.

    Article  Google Scholar 

  41. Neumann, K., Maak, S., Fritzsche, P., and Gattermann, R., Microsatellites for diversity studies in the golden hamster (Mesocricetus auratus), Mol. Ecol. Notes, 2005, vol. 5, no. 4, pp. 876–878.

    Article  CAS  Google Scholar 

  42. Olsson, M., Gullberg, A., Tegelström, H., Madsen, T., and Shine, R., Can female adders multiply?, Nature, 1994 vol. 369, no. 6481, p. 528.

    Article  Google Scholar 

  43. Parker, P.G. and Tang-Martinez, Z., Bateman gradients in field and laboratory studies: a cautionary tale, Integr. Comp. Biol., 2005, vol. 45, no. 5, pp. 895–902.

    Article  PubMed  Google Scholar 

  44. Parker, G.A., Sperm Competition and the Evolution of Animal Mating Strategies, Orlando, Florida: Academic, 1984, pp. 1–60.

    Book  Google Scholar 

  45. Seger, J. and Hamilton, W.D., Parasites and sex, Evol. Sex, 1988, vol. 176, p. 193.

    Google Scholar 

  46. Silverman, J., Biomedical research techniques, in The Laboratory Rabbit, Guinea Pig, Hamster, and Other Rodents, Academic, 2012, pp. 786–787.

    Google Scholar 

  47. Simmons, L.W., The evolution of polyandry: sperm competition, sperm selection, and offspring viability, Annu. Rev. Ecol., Evol., Syst., 2005, vol. 36, pp. 125–146.

    Article  Google Scholar 

  48. Simonova, E.Yu., Kosyreva, A.M., Makarova, O.V., and Diatroptov, M.E., Age-related changes in the morphofunctional state of the immune system in Wistar rats, Klin. Eksp. Morfol., 2014, no. 9, pp. 35–41.

  49. Soboleva, A.S., Alekseeva, G.S., Erofeeva, M.N., Klyuchnikova, P.S., Sorokin, P.A., and Naidenko, S.V., Leukocytes count and profile during early postnatal ontogenesis in domestic cats: effect of litter size and multiple paternity, J. Exp. Zool., Part A: Ecol. Integr. Physiol., 2021, vol. 335, no. 8, pp. 637–648.

    Article  CAS  Google Scholar 

  50. Stockley, P., Female multiple mating behaviour, early reproductive failure and litter size variation in mammals, Proc. R. Soc. London, Ser. B, 2003, vol. 270, no. 1512, pp. 271–278.

  51. Stockley, P., Searle, J.B., Macdonald, D.W., and Jones, C.S., Female multiple mating behaviour in the common shrew as a strategy to reduce inbreeding, Proc. R. Soc. London, Ser. B, 1993, vol. 254, no. 1341, pp. 173–179.

    Article  CAS  Google Scholar 

  52. Strel’tsov, V.V., Il’chenko, O.G., and Kotenkova, E.V., The influence of inbreeding on the reproductive performance of Yellow steppe lemming (Eolagurus luteus, Rodentia, Cricetidae) in a laboratory colony, Zool. Zh., 2022, vol. 101, no. 9, pp. 1039–1047.

    Google Scholar 

  53. Thonhauser, K.E., Raveh, S., Thoss, M., and Penn, D.J., Does multiple paternity influence offspring disease resistance?, J. Evol. Biol., 2016, vol. 9, no. 6, pp. 1142–1150.

    Article  Google Scholar 

  54. Tian, Y., Zhao, H., Xu, D., Zhao, M., Zhang, Q., Zhao, Q., Zhang, Y., Zhang, Q., Hu, X., and Li, Z.-Y., Effect of gradually decreasing photoperiod on immune function in Siberian hamsters, Trends J. Sci. Res., 2018, vol. 3, no. 1, pp. 1–9.

    Article  Google Scholar 

  55. Tregenza, T. and Wedell, N., Polyandrous females avoid costs of inbreeding, Nature, 2002, vol. 415, no. 686, pp. 71–73.

    Article  CAS  PubMed  Google Scholar 

  56. Tregenza, T. and Wedell, N., Benefits of multiple mates in the cricket Gryllus bimaculatus, Evolution, 1998, vol. 52, no. 6, pp. 1726–1730.

    Article  PubMed  Google Scholar 

  57. Tregenza, T., Wedell, N., Hosken, D.J., and Ward, P.I., Maternal effects on offspring depend on female mating pattern and offspring environment in yellow dung flies, Evolution, 2003, vol. 57, no. 2, pp. 297–304.

    PubMed  Google Scholar 

  58. Waser, P.M. and De Woody, J.A., Multiple paternity in a philopatric rodent: the interaction of competition and choice, Behav. Ecol., 2006, vol. 17, no. 6, pp. 971–978.

    Article  Google Scholar 

  59. Weigensberg, I., Carriere, Y., and Roff, D.A., Effects of male genetic contribution and paternal investment to egg and hatchling size in the cricket Gryllus firmus, J. Evol. Biol., 1998, vol. 11, no. 2, pp. 135–146.

    Google Scholar 

  60. Williams, G.C., Sex and Evolution, New Jersey: Princeton Univ. Press, 1975.

    Google Scholar 

  61. Wolff, J.O. and Macdonald, D.W., Promiscuous females protect their offspring, Trends Ecol. Evol., 2004, vol. 19, no. 3, pp. 127–134.

    Article  PubMed  Google Scholar 

  62. Yasui, Y., Female multiple mating as a genetic bet-hedging strategy when mate choice criteria are unreliable, Ecol. Res., 2001, vol. 16, no. 4, pp. 605–616.

    Article  Google Scholar 

  63. Yellon, S.M., Fagoaga, O.R., and Nehlsen-Cannarella, S.L., Influence of photoperiod on immune cell functions in the male Siberian hamster, Am. J. Physiol., Reg., Integr., Comp. Physiol., 1999, vol. 276, no. 1, pp. R97–R102.

    Article  CAS  Google Scholar 

  64. Zeh, D.W. and Zeh, J.A., Reproductive mode and the genetic benefits of polyandry, Anim. Behav., 2001, vol. 61, no. 6, pp. 1051–1063.

    Article  Google Scholar 

  65. Zeh, J.A. and Zeh, D.W., Outbred embryos rescue inbred half-siblings in mixed-paternity broods of live-bearing females, Nature, 2006, vol. 439, no. 7073, pp. 201–203.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. V. Potashnikova, E. V. Kuznetsova, N. Yu. Feoktistova, N. A. Vasilieva or S. I. Meschersky.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potashnikova, E.V., Kuznetsova, E.V., Feoktistova, N.Y. et al. Evaluation of the Influence of Multiple Paternity on the Immune Status of Syrian Hamster (Mesocricetus auratus, Rodentia, Cricetidae) Young. Biol Bull Russ Acad Sci 50, 2509–2516 (2023). https://doi.org/10.1134/S1062359023090303

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359023090303

Keywords:

Navigation