Skip to main content
Log in

Synergistic Microbial Degradation of Microplastics and Toxic Dyes Showing Potential Reuse of the Degraded Dye Metabolites

  • MICROBIOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Contamination of water through microplastics/polyethylene (PE) and textile waste effluents has become a global environmental threat that needs to be addressed sooner. This research aimed to assess a green approach to treat toxic dye effluents and PE using beneficial microbes. The bacterial strains were isolated from a habitat of waste effluent, collected from a Textile Dyeing Industry, Karachi Pakistan. Besides screening for laccase secretion, the isolates with an ability to degrade PE and transform toxic dye effluents into a reusable metabolite were identified by 16S rDNA sequencing as B. tequilensis M1 (Accession# MZ357709), B. subtilis M7 (Accession# MZ357959), Bacillus sp. (in: Bacteria) M8 (Accession# MZ360013), P. megaterium S8 (Accession# MZ422441) and Bacillus sp. (in: Bacteria) S5 (Accession# MZ382863). Average maximum bioremediation of 87% of reactive black and 97.6% of reactive blue dye were sufficiently taken place by B. tequilensis M1. The treated dye metabolites were comparatively effective and useful for irrigating radish plants, revealing bioremediation efficiency leading to potential use of biologically treated dye effluents. The reusability of treated toxic dye effluents was determined by phytotoxicity and seed germination analysis, along with water purity analysis experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Arregui, L., Ayala, M., Gómez-Gil, X., Gutiérrez-Soto, G., Hernández-Luna, C., Herrera de los Santos, M., Levin, L., Rojo-Domínguez, A., Romero-Martínez, D., Saparrat, M., Trujillo-Roldán, M., and Valdez-Cruz, N., Laccases: structure, function, and potential application in water bioremediation, Microb. Cell Fact., 2019, vol. 18. https://doi.org/10.1186/s12934-019-1248-0

  2. Aziz, N.I.H, Hanafiah, M.M., Halim, N., and Fidri, P., Phytoremediation of TSS, NH3-N and COD from sewage wastewater by Lemna minor L., Salvinia minima, Ipomea aquatica and Centella asiatica, Appl. Sci., 2020, vol. 10, p. 5397. https://doi.org/10.3390/app10165397

    Article  CAS  Google Scholar 

  3. Bhatt, P., Gangola, S., Bhandari, G., Zhang, W., Maithani, D., Mishra, S., and Chen, S., New insights into the degradation of synthetic pollutants in contaminated environments, Chemosphere, 2021, vol. 268, p.128827. https://doi.org/10.1016/j.chemosphere.2020.128827

    Article  CAS  PubMed  Google Scholar 

  4. Cao, Y., Zhao J., and Xiong Y., Coomassie Brilliant Blue-binding: a simple and effective method for the determination of water-insoluble protein surface hydrophobicity, Anal. Methods, 2016, vol. 8, pp. 790–795. https://doi.org/10.1039/C5AY02630J

    Article  CAS  Google Scholar 

  5. Chaturvedi, P., Shukla, P., Giri, B., Chowdhary, P., Chandra, R., Gupta, P., and Pandey, A., Prevalence and hazardous impact of pharmaceutical and personal care products and antibiotics in environment: a review on emerging contaminants, Environ. Res., 2021, vol. 194, p. 110664. https://doi.org/10.1016/j.envres.2020.110664

    Article  CAS  PubMed  Google Scholar 

  6. Georgiou, C., Grintzalis, K., Zervoudakis, G., and Papapostolou, I., Mechanism of Coomassie brilliant blue G-250 binding to proteins: a hydrophobic assay for nanogram quantities of proteins, Anal. Bioanal. Chem., 2008, vol. 391, pp. 391–403. https://doi.org/10.1007/s00216-008-1996-x

    Article  CAS  PubMed  Google Scholar 

  7. Gopinath, K., Seshachalam, S., Neelavannan, K., Anburaj, V., Rachel, M., Ravi, S., Bharath, M., and Achyuthan, H., Quantification of microplastic in Red Hills Lake of Chennai city, Tamil Nadu, India, Environ. Sci. Pollut. Res., 2020, vol. 27, pp. 33297–33306. https://doi.org/10.1007/s11356-020-09622-2

    Article  CAS  Google Scholar 

  8. Haq, I., Raj A., and Markandeya, Biodegradation of Azure-B dye by Serratia liquefaciens and its validation by phytotoxicity, genotoxicity and cytotoxicity studies, Chemosphere, 2018, vol. 196, pp. 58–68. https://doi.org/10.1016/j.chemosphere.2017.12.153

    Article  CAS  PubMed  Google Scholar 

  9. Hernandez, P., Adams, A., Barnes, R., Bloodhart, B., Burt, M., Clinton, S., Du, W., Henderson, H., Pollack, I., and Fischer, E., Inspiration, inoculation, and introductions are all critical to successful mentorship for undergraduate women pursuing geoscience careers, Commun. Earth Environ., 2020, vol. 1. https://doi.org/10.1038/s43247-020-0005-y

  10. Howarda, G.T. and Hilliard., N.P., Use of Coomassie blue–polyurethane interaction in screening of polyurethanase proteins and polyurethanolytic bacteria, Int. Biodeterior. Biodegradation, 1999, vol. 43, pp. 23–30. https://doi.org/10.1016/S0964-8305(98)00062-6

    Article  Google Scholar 

  11. Ihsanullah, I., Jamal, A., Ilyas, M., Zubair, M., Khan, G., and Atieh, M., Bioremediation of dyes: current status and prospects, J. Water Process. Eng. J., 2020, vol. 38, p. 101680. https://doi.org/10.1016/j.jwpe.2020.101680

    Article  Google Scholar 

  12. Iqbal, A., Ali, N., Shang, Z., Malik, N., Rehman, M., Sajjad, W., Rehman, M., and Khan, S., Decolorization and toxicity evaluation of simulated textile effluent via natural microbial consortia in attached growth reactors, Environ. Technol. Innov., 2022, vol. 26, p. 102284. https://doi.org/10.1016/j.eti.2022.102284

    Article  CAS  Google Scholar 

  13. Khan, S., Bhardwaj, U., Iqbal, H., and Joshi, N., Synergistic role of bacterial consortium to biodegrade toxic dyes containing wastewater and its simultaneous reuse as an added value, Chemosphere, 2021, vol. 284, p. 131273. https://doi.org/10.1016/j.chemosphere.2021.131273

    Article  CAS  PubMed  Google Scholar 

  14. Lellis, B., Fávaro-Polonio, C., Pamphile, J., and Polonio, J., Effects of textile dyes on health and the environment and bioremediation potential of living organisms, Biotechnol. Res. Innov., 2019, vol. 3, pp. 275–290. https://doi.org/10.1016/j.biori.2019.09.001

    Article  Google Scholar 

  15. Magnin, A., Entzmann L., Pollet E., and Avérous L., Breakthrough in polyurethane bio-recycling: an efficient laccase-mediated system for the degradation of different types of polyurethanes, J. Waste Manage., 2021, vol. 132, pp. 23–30. https://doi.org/10.1016/j.wasman.2021.07.011

    Article  CAS  Google Scholar 

  16. Eldin, M.A., Al-Sharnouby, S.F., ElGabry, K.I., and Ramadan, A.I., Aspergillus terreus, Penicillium sp. and Bacillus sp. isolated from mangrove soil having laccase and peroxidase role in depolymerization of polyethylene bags, Process Biochem., 2022, vol. 118, pp. 215–226. https://doi.org/10.1016/j.procbio.2022.04.030

    Article  CAS  Google Scholar 

  17. Tamnou, E.B.M., Tamsa Arfao, A., Nougang, M., Metsopkeng, C., Noah Ewoti, O., Moungang, L., Nana, P., Atem Takang-Etta, L., Perrière, F., Sime-Ngando, T., and Nola, M., Biodegradation of polyethylene by the bacterium Pseudomonas aeruginosa in acidic aquatic microcosm and effect of the environmental temperature, Environ. Challenges, 2021, vol. 3. https://doi.org/10.1016/j.envc.2021.100056

  18. Oh, J., Yoo, I., Song, D., Lee, J., Kim, Y., Ki, C., Lee, N., and Huh, H., A case of Cruoricaptor ignavus isolated from the blood of a patient with Ewing sarcoma, Ann. Lab. Med., 2018, vol. 38, pp. 613–615. https://doi.org/10.3343/alm.2018.38.6.613

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pramila, R., Biodegradation of low-density polyethylene (LDPE) by fungi isolated from marine water—a SEM analysis, Afr. J. Microbiol. Res., 2011, vol. 5. https://doi.org/10.5897/AJMR11.670

  20. Ranjani, S., Noorul Samsoon Maharifa, H., Raihanathus Sahdhiyya, A., and Hemalatha, S., Phytotoxicity assessment of synthesized green nanosuspension on germination and growth in Vigna radiata, Inorg. Nano-Met. Chem., 2021, pp. 1–8. https://doi.org/10.1080/24701556.2021.1993916

  21. Reda, M., Mashtoly, T., El-Zemaity, M., Abolmaaty, A., and Abdelatef, G., Phylogenic and antagonistic characteristics of novel Bacillus cereus isolates against desert locust, Schistocerca gregaria Forskal (Orthoptera: Acrididae), Egypt. J. Biol. Pest Control, 2018, vol. 28. p. 51. https://doi.org/10.1186/s41938-018-0056-x

    Article  Google Scholar 

  22. Roebroek, C., Harrigan, S., van Emmerik, T., Baugh, C., Eilander, D., Prudhomme, C. and Pappenberger, F., Plastic in global rivers: are floods making it worse?, Environ. Res. Lett., 2021, vol. 16, p. 025003. https://doi.org/10.1088/1748-9326/abd5df

    Article  Google Scholar 

  23. Santo, M., Weitsman, R., and Sivan, A., The role of the copper-binding enzyme—laccase—in the biodegradation of polyethylene by the Actinomycete Rhodococcus ruber, Int. Biodeterior. Biodegradation, 2013, vol. 84, pp. 204–210. https://doi.org/10.1016/j.ibiod.2012.03.001

    Article  CAS  Google Scholar 

  24. Saratale, R.G., Banu, R.J., Shin, H., Bharagava, R.N., and Saratale, G.D., in Textile Industry Wastewaters as Major Sources of Environmental Contamination: Bioremediation Approaches for Its Degradation and Detoxification, Saxena, G. and Bharagava, R., Eds., SpringerLink, 2019, pp. 135–167.

    Google Scholar 

  25. Saravanan, A., Senthil Kumar, P., Jeevanantham, S., Karishma, S., Tajsabreen, B., Yaashikaa, P., and Reshma, B., Effective water/wastewater treatment methodologies for toxic pollutants removal: processes and applications towards sustainable development, Chemosphere, 2021, vol. 280, p. 130595. https://doi.org/10.1016/j.chemosphere.2021.130595

    Article  CAS  PubMed  Google Scholar 

  26. Skariyachan, S., Patil, A., Shankar, A., Manjunath, M., Bachappanavar, N., and Kiran, S., Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sps. and Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants, Polym. Degrad. Stab., 2018, vol. 149, pp. 52–68. https://doi.org/10.1016/j.polymdegradstab.2018.01.018

    Article  CAS  Google Scholar 

  27. Sheikhi, F., Ardakani, M.R., Enayatizamir, N., and Rodriguez-Couto, S., The determination of assay for laccase of Bacillus subtilis WPI with two classes of chemical compounds as substrates, Indian J. Microbiol., 2012, vol. 52, pp. 701–707. https://doi.org/10.1007/s12088-012-0298-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sowmya, K., John, C., and Shrivasthava, N., Urban flood vulnerability zoning of Cochin City, southwest coast of India, using remote sensing and GIS, Nat. Hazards, 2014, vol. 75, pp. 1271–1286. https://doi.org/10.1007/s11069-014-1372-4

    Article  Google Scholar 

  29. Tounsadi, H., Metarfi, Y., Taleb, M., El Rhazi, K., and Rais, Z., Impact of chemical substances used in textile industry on the employee’s health: epidemiological study, Ecotoxicol. Environ. Saf., 2020, vol. 197, p. 110594. https://doi.org/10.1016/j.ecoenv.2020.110594

    Article  CAS  PubMed  Google Scholar 

  30. Urbanek, A., Rymowicz W., and Mirończuk A., Degradation of plastics and plastic-degrading bacteria in cold marine habitats, Appl. Microbiol. Biotechnol., 2018, vol. 102, pp. 7669–7678. https://doi.org/10.1007/s00253-018-9195-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Verbeek, J., Rajamaki, B., Ijaz, S., Sauni, R., Toomey, E., Blackwood, B., Tikka, C., Ruotsalainen, J., and Kilinc Balci, F., Personal protective equipment for preventing highly infectious diseases due to exposure to contaminated body fluids in healthcare staff, CDSR, 2020. https://doi.org/10.1002/14651858.CD011621.pub4

  32. Yaseen, D.A. and Scholz M., Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review, Int. J. Environ. Sci., 2019, vol. 16, pp. 1193–1226. https://doi.org/10.1007/s13762-018-2130-z

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors would like to acknowledge the Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (Karachi Campus), Karachi, Pakistan.

Funding

This work was supported by the Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saira Yahya.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies with animals or human participants performed by any of the authors.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anwar, M.O., Saleem, M. & Yahya, S. Synergistic Microbial Degradation of Microplastics and Toxic Dyes Showing Potential Reuse of the Degraded Dye Metabolites. Biol Bull Russ Acad Sci 50, 575–585 (2023). https://doi.org/10.1134/S1062359022601392

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359022601392

Keywords:

Navigation