Skip to main content
Log in

Pace-of-Life Syndrome (POLS): Evolution of the Concept

  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The pace-of-life syndrome (POLS) hypothesis is a recent but very influential concept in life-history theory. Due to the extreme progress in research in POLS over the last decade, a review of the origin and development of this concept is topical. The roots of the POLS hypothesis go back to the r/K selection theory of MacArthur and Wilson, authors of the first idea of predictable correlations among life-history traits. Following r/K selection theory, the idea of a fast–slow life-history continuum appeared in ecology, suggesting that life-history traits covaried and formed axes from fast to slow life histories. Species physiology was soon incorporated into the fast–slow continuum theory. Thus, animal species were supposed to vary from fast species with an early development and maturation, a high rate of metabolism, a high mortality, and a short lifespan to slow species with a late development, a low metabolic rate, and a long lifespan. The theory was well supported by empirical studies in various animal species. In parallel, the concept of personality emerged in behavioral studies. The concept suggested consistent and predictable between-individual variations in behavioral phenotypes formed by syndromes of various correlated behavioral traits. More recently, the concepts of personality and fast–slow life-history continuum formed the joint and more complex POLS idea of a multivariate adaptive integration of behavior, life history, and physiology among individuals within and between species. The POLS concept suggests that various traits form a continuum from aggressive, bold, active explorers with fast life histories to shy, nonaggressive individuals with low exploration outfits and a slow life. The predictions were tested in numerous studies, and empirical data have extended the basic idea of pace-of-life: the relationships appeared to be more complex and multidimensional. The POLS hypothesis presently includes covariations among life-history, behavior, immunity, hormones, and metabolic rates, with these relationships being modulated by the environment, development, population density, and social conditions. The POLS ideas, being of great applied and theoretical significance, and long-term empirical studies in the wild populations are in high demand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Adriaenssens, B. and Johnsson, J.I., Personality and life-history productivity: consistent or variable associations?, Trends Ecol. Evol., 2009, vol. 24, pp. 179–180.

    Article  Google Scholar 

  2. Armitage, K.B., Sociality as a life-history tactic of ground squirrels, Oecologia, 1981, vol. 48, pp. 36–49.

    Article  Google Scholar 

  3. Belyaev, D.K., Plyusnina, I.Z., and Trut, L.N., Domestication in the silver fox (Vulpes fulvus Desm): changes in physiological boundaries of the sensitive period of primary socialization, Appl. Anim. Behav. Sci., 1985, vol. 13, pp. 359–370.

    Article  Google Scholar 

  4. Bennett, A.F., Interindividual variability: an underutilized resource, New Dir. Ecol. Physiol., 1987, vol. 19, pp. 147–169.

    Google Scholar 

  5. Bielby, J., Mace, G.M., Bininda-Emonds, O.R.P., Cardillo, M., Gittleman, J.L., et al., The fast-slow continuum in mammalian life history: an empirical reevaluation, Am. Nat., 2007, vol. 169, pp. 748–757.

    Article  CAS  Google Scholar 

  6. Biro, P.A. and Stamps, J.A., Are animal personality traits linked to life-history productivity?, Trends Ecol. Evol., 2008, vol. 23, pp. 361–368.

    Article  Google Scholar 

  7. Biro, P.A. and Stamps, J.A., Do consistent individual differences in metabolic rate promote consistent individual differences in behavior?, Trends Ecol. Evol., 2010, vol. 25, pp. 653–659.

    Article  Google Scholar 

  8. Bouchard, T.J. and Loehlin, J.C., Genes, evolution, and personality, Behav. Genet., 2001, vol. 31, no. 3, pp. 243–273.

    Article  Google Scholar 

  9. Boyer, N., Réale, D., Marmet, J., Pisanu, B., and Chapuis, J.L., Personality, space use and tick load in an introduced population of Siberian chipmunks Tamias sibiricus, J. Anim. Ecol., 2010, vol. 79, no. 3, pp. 538–547.

    Article  Google Scholar 

  10. Braithwaite, R.W. and Lee, A.K., A mammalian example of semelparity, Am. Nat., 1979, vol. 113, no. 1, pp. 151–155.

    Article  Google Scholar 

  11. Budaev, S.V., Sex differences in the big five personality factors: testing an evolutionary hypothesis, Pers. Individ. Differ., 1999, vol. 26, pp. 801–813.

    Article  Google Scholar 

  12. Budaev, S. and Zworykin, D., Individuality in fish behavior: ecology and comparative psychology, J. Ichthyol., 2002, vol. 42 (suppl.), pp. S189–S195.

    Google Scholar 

  13. Budaev, S.V., Mikheev, V.N., and Pavlov, D.S., Individual differences in behavior and mechanisms of ecological differentiation on the example of fish, Zh. Obshch. Biol., 2015, vol. 76, no. 1, pp. 26–47.

    CAS  Google Scholar 

  14. Burton, T., Killen, S.S., Armstrong, J.D., and Metcalfe, N.B., What causes intraspecific variation in resting metabolic rate and what are its ecological consequences?, Proc. R. Soc. London, Ser. B, 2011, vol. 278, pp. 3465–3473.

    CAS  Google Scholar 

  15. Careau, V., Thomas, D., Humphries, M.M., and Réale, D., Energy metabolism and animal personality, Oikos, 2008, vol. 117, pp. 641–653.

    Article  Google Scholar 

  16. Careau, V., Réale, D., Humphries, M.M., and Thomas, D.W., The pace of life under artificial selection: personality, energy expenditure, and longevity are correlated in domestic dogs, Am. Nat., 2010, vol. 175, no. 6, pp. 753–758.

    Article  Google Scholar 

  17. Cavigelli, S.A., Animal personality and health, Behaviour, 2005, vol. 142, nos. 9–10, pp. 1223–1244.

    Article  Google Scholar 

  18. Cole, L.C., The population consequences of life history phenomena, Quart. Rev. Biol., 1954, vol. 29, no. 2, pp. 103–137.

    Article  CAS  Google Scholar 

  19. Cote, J., Dreiss, A., and Clobert, J., Social personality trait and fitness, Proc. R. Soc. London, Ser. B, 2008, vol. 275, pp. 2851–2858.

    Google Scholar 

  20. Crespi, B.J. and Teo, R., Comparative phylogenetic analysis of the evolution of semelparity and life history in salmonid fishes, Evolution, 2002, vol. 56, no. 5, pp. 1008–1020.

    Google Scholar 

  21. Dammhahn, M., Dingemanse, N.J., Niemelä, P.T., and Réale, D., Pace-of-life syndromes: a framework for the adaptive integration of behaviour, physiology and life history, Behav. Ecol. Sociobiol., 2018, vol. 72, article 62. https://doi.org/10.1007/s00265-018-2473-y

    Article  Google Scholar 

  22. Dani, K.G. and Kodandaramaiah, U., Plant and animal reproductive strategies: lessons from offspring size and number tradeoffs, Front. Ecol. Evol., 2017, vol. 5, article 38. https://doi.org/10.3389/fevo.2017.00038

    Article  Google Scholar 

  23. Debecker, S., Sanmartin-Villar, I., de Guinea-Luengo, M., Cordero-Rivera, A., and Stoks, R., Integrating the pace of life syndrome across species, sexes and individuals: covariation of life history and personality under pesticide exposure, J. Anim. Ecol., 2016, vol. 85, no. 3, pp. 726–738.

    Article  Google Scholar 

  24. Dingemanse, N.J. and Wolf, M., Recent models for adaptive personality differences: a review, Philos. Trans. R. Soc., B, 2010, vol. 365, pp. 3947–3958.

  25. Dingemanse, N.J., Wright, J., Kazem, A.J., Thomas, D.K., Hickling, R., and Dawnay, N., Behavioural syndromes differ predictably between 12 populations of three-spined stickleback, J. Anim. Ecol., 2007, vol. 76, pp. 1128–1138.

    Article  Google Scholar 

  26. Dingemanse, N.J., Kazem, A.J., Réale, D., and Wright, J., Behavioural reaction norms: animal personality meets individual plasticity, Trends Ecol. Evol., 2010, vol. 25, pp. 81–89.

    Article  Google Scholar 

  27. Dobson, F.S. and Oli, M.K., Fast and slow life histories of mammals, Ecoscience, 2007, vol. 14, pp. 292–299.

    Article  Google Scholar 

  28. Dochtermann, N.A., Schwab, T., and Sih, A., The contribution of additive genetic variation to personality variation: heritability of personality, Proc. R. Soc. London, Ser. B, 2015, vol. 282, pp. 2014–2201.

    Google Scholar 

  29. Ducrest, A.L., Keller, L., and Roulin, A., Pleiotropy in the melanocortin system, coloration and behavioural syndromes, Trends Ecol. Evol., 2008, vol. 23, no. 9, pp. 502–510.

    Article  Google Scholar 

  30. Finkel, T. and Holbrook, N.J., Oxidants, oxidative stress and the biology of ageing, Nature, 2000, vol. 408, no. 6809, pp. 239–247.

    Article  CAS  Google Scholar 

  31. Franco, M. and Silvertown, J., Life history variation in plants: an exploration of the fast-slow continuum hypothesis, Philos. Trans. R. Soc., B, 1996, vol. 351, no. 1345, pp. 1341–1348.

  32. Gadgil, M. and Bossert, W.H., Life historical consequences of natural selection, Am. Nat., 1970, vol. 104, no. 935, pp. 1–24.

    Article  Google Scholar 

  33. Gaillard, J.M., Pontier, D., Allaine, D., Lebreton, J.D., Trouvilliez, J., and Clobert, J., An analysis of demographic tactics in birds and mammals, Oikos, 1989, vol. 56, pp. 59–76.

    Article  Google Scholar 

  34. Galliard, J.F., Paquet, M., Cisel, M., and Montes-Poloni, L., Personality and the pace-of-life syndrome: variation and selection on exploration, metabolism and locomotor performances, Funct. Ecol., 2013, vol. 27, pp. 136–144.

    Article  Google Scholar 

  35. Garamszegi, L.Z., Marko, G., and Herczeg, G., A meta-analysis of correlated behaviours with implications for behavioural syndromes: mean effect size, publication bias, phylogenetic effects and the role of mediator variables, Evol. Ecol., 2012, vol. 26, pp. 1213–1235.

    Article  Google Scholar 

  36. Giraudeau, M., Angelier, F., and Sepp, T., Do telomeres influence pace-of-life-strategies in response to environmental conditions over a lifetime and between generations?, BioEssays, 2019, vol. 41, no. 3, art. ID 1800162.

    Article  Google Scholar 

  37. Gosling, S.D., From mice to men: what can we learn about personality from animal research?, Psychol. Bull., 2001, vol. 127, pp. 45–86.

    Article  CAS  Google Scholar 

  38. Groothuis, T.G.G. and Carere, C., Avian personalities: characterization and epigenesist, Neurosci. Biobehav. Rev., 2005, vol. 29, pp. 137–150.

    Article  Google Scholar 

  39. Hämäläinen, A., Immonen, E., Tarka, M., and Schuett, W., Evolution of sex-specific pace-of-life syndromes: causes and consequences, Behav. Ecol. Sociobiol., 2018, vol. 72, article 50. https://doi.org/10.1007/s00265-018-2466-x

    Article  Google Scholar 

  40. Hammerstein, P. and Selten, R., Game theory and evolutionary biology, in Handbook of Game Theory, 1994, vol. 2, pp. 929–993.

  41. Harvey, P.H. and Zammuto, R.M., Patterns of mortality and age at first reproduction in natural populations of mammals, Nature, 1985, vol. 315, no. 6017, pp. 319–320.

    Article  CAS  Google Scholar 

  42. Hensley, N.M., Cook, T.C., Lang, M., Petelle, M.B., and Blumstein, D.T., Personality and habitat segregation in giant sea anemones (Condylactis gigantea), J. Exp. Mar. Biol. Ecol., 2012, vol. 426, pp. 1–4.

    Article  Google Scholar 

  43. Houston, A.I., Evolutionary models of metabolism, behaviour and personality, Philos. Trans. R. Soc., B, 2010, vol. 365, pp. 3969–3975.

  44. Huntingford, F.A., The relationship between anti-predator behaviour and aggression among conspecifics in the three-spined stickleback, Gasterosteus aculeatus, Anim. Behav., 1976, vol. 24, no. 2, pp. 245–260.

    Article  Google Scholar 

  45. Immonen, E., Hämäläinen, A., Schuett, W., and Tarka, M., Evolution of sex-specific pace-of-life syndromes: genetic architecture and physiological mechanisms, Behav. Ecol. Sociobiol., 2018, vol. 72, article 60. https://doi.org/10.1007/s00265-018-2462-1

    Article  Google Scholar 

  46. Katz, K. and Naug, D., A mechanistic model of how metabolic rate can interact with resource environment to influence foraging success and lifespan, Ecol. Model., 2020, vol. 416, article ID 108899.

  47. Ketterson, E.D. and Nolan, J.V., Adaptation, exaptation, and constraint: a hormonal perspective, Am. Nat., 1999, vol. 154, no. S1, pp. S4–S25.

    Article  Google Scholar 

  48. Koolhaas, J.M., Coping style and immunity in animals: making sense of individual variation, Brain, Behav., Immun., 2008, vol. 22, no. 5, pp. 662–667.

    Article  CAS  Google Scholar 

  49. Koolhaas, J.M., Korte, S.M., De Boer, S.F., Van Der Vegt, B.J., Van Reenen, C.G., et al., Coping style in animals: current status in behavior and stress-physiology, Neurosci. Biobehav. Rev., 1999, vol. 23, pp. 925–935.

    Article  CAS  Google Scholar 

  50. Kortet, R., Hedrick, A.V., and Vainikka, A., Parasitism, predation and the evolution of animal personalities, Ecol. Lett., 2010, vol. 13, no. 12, pp. 1449–1458.

    Article  Google Scholar 

  51. Kralj-Fišer, S. and Schuett, W., Studying personality variation in invertebrates: why bother?, Anim. Behav., 2014, vol. 91, pp. 41–52.

    Article  Google Scholar 

  52. Lack, D., The Natural Regulation of Animal Numbers, Oxford: Clarendon Press, 1954.

    Google Scholar 

  53. Lande, R. and Arnold, S.J., The measurement of selection on correlated characters, Evolution, 1983, vol. 37, pp. 1210–1226.

    Article  Google Scholar 

  54. MacArthur, R.H. and Wilson, E.O., The Theory of Island Biogeography, Monogr. Popul. Biol., Princeton, New Jersey: Princeton Univ. Press, 1967, vol. 1.

  55. Massen, J.J., Antonides, A., Arnold, A.M.K., Bionda, T., and Koski, S.E., A behavioral view on chimpanzee personality: exploration tendency, persistence, boldness, and tool-orientation measured with group experiments, Am. J. Primatol., 2013, vol. 75, no. 9, pp. 947–958.

    Article  Google Scholar 

  56. Mather, J.A. and Anderson, R.C., Personalities of octopuses (Octopus rubescens), J. Comp. Psychol., 1993, vol. 107, no. 3, pp. 336–340.

    Article  Google Scholar 

  57. Mathot, K.J. and Frankenhuis, W.E., Models of pace-of-life syndromes (POLS): a systematic review, Behav. Ecol. Sociobiol., 2018, vol. 72, Article 41. https://doi.org/10.1007/s00265-018-2459-9

    Article  Google Scholar 

  58. Matsumura, K., Ito, R., and Miyatake, T., Pace-of-life: relationships among locomotor activity, life history, and circadian rhythm in the assassin bug, Amphibolus venator, Ethology, 2019, vol. 125, no. 3, pp. 127–132.

    Article  Google Scholar 

  59. Maynard Smith, J., Evolution and the Theory of Games, Cambridge: Cambridge University Press, 1982.

    Book  Google Scholar 

  60. Moiron, M., Laskowski, K.L., and Niemelä, P.T., Individual differences in behaviour explain variation in survival: a meta-analysis, Ecol. Lett., 2020, vol. 23, no. 2, pp. 399–408.

  61. Montiglio, P.O., Dammhahn, M., Messier, G.D., and Réale, D., The pace-of-life syndrome revisited: the role of ecological conditions and natural history on the slow-fast continuum, Behav. Ecol. Sociobiol., 2018, vol. 72, article 116. https://doi.org/10.1007/s00265-018-2526-2

    Article  Google Scholar 

  62. Morales, J.A., Cardoso, D.G., Della Lucia, T.M.C., and Guedes, R.N.C., Weevil x insecticide: does ‘personality’ matter?, PLoS One, 2013, vol. 8, no. 6, article ID e67283 https://doi.org/10.1371/journal.pone.0067283

    Article  CAS  Google Scholar 

  63. Moshkin, M.P. and Shilova, S.A., Diversity of individuals as a mechanism for maintaining the stability of population structures, Usp. Sovrem. Biol., 2008, vol. 128, no. 3, pp. 307–320.

    Google Scholar 

  64. Niemelä, P.T., DiRienzo, N., and Hedrick, A.V., Predator-induced changes in the boldness of naive field crickets, gryllus integer, depends on behavioural type, Anim. Behav., 2012, vol. 84, no. 1, pp. 129–135.

    Article  Google Scholar 

  65. Niemelä, P.T., Dingemanse, N.J., Alioravainen, N., Vainikka, A., and Kortet, R., Personality pace-of-life hypothesis: testing genetic associations among personality and life history, Behav. Ecol., 2013, vol. 24, pp. 935–941.

    Article  Google Scholar 

  66. van Noordwijk, A.J. and de Jong, G., Acquisition and allocation of resources: their influence on variation in life history tactics, Am. Nat., 1986, vol. 128, no. 1, pp. 137–142.

    Article  Google Scholar 

  67. Oli, M.K., The fast-slow continuum and mammalian life history patterns: an empirical evaluation, Basic Appl. Ecol., 2004, vol. 5, pp. 449–463.

    Article  Google Scholar 

  68. Øverli, Ø., Sørensen, C., Pulman, K.G.T., Pottinger, T.G., Korzan, W., et al., Evolutionary background for stress-coping styles: relationships between physiological, behavioral, and cognitive traits in non-mammalian vertebrates, Neurosci. Biobehav. Rev., 2007, vol. 31, pp. 396–412.

    Article  Google Scholar 

  69. Pavlov, I.P., O tipakh vysshei nervnoi deyatel’nosti i eksperimental’nykh nevrozakh (On the Types of Higher Nervous Activity and Experimental Neuroses), Moscow: Medgiz, 1954.

  70. Penke, L., Denissen, J.J., and Miller, G.F., The evolutionary genetics of personality, Eur. J. Pers., 2007, vol. 21, pp. 549–587.

    Article  Google Scholar 

  71. Personality in Nonhuman Animals, Vonk, J., Weiss, A., and Kuczaj, S.A., Eds., Berlin, Germany: Springer, 2017.

    Google Scholar 

  72. Pianka, E.R., On r- and K-selection, Am. Nat., 1970, vol. 104, pp. 592–597.

    Article  Google Scholar 

  73. Pianka, E.,. Evolyutsionnaya ekologiya (Evolutionary Ecology), Moscow: Mir, 1981.

  74. Promislow, D.E.L. and Harvey, P.H., Living fast and dying young: a comparative analysis of life-history variation among mammals, J. Zool., 1990, vol. 220, pp. 417–437.

    Article  Google Scholar 

  75. Qu, J., Réale, D., Fletcher, Q.E., and Zhang, Y., Among-population divergence in personality is linked to altitude in plateau pikas (Ochotona curzoniae), Front. Zool., 2019, vol. 16, article 26. https://doi.org/10.1186/s12983-019-0329-6

    Article  CAS  Google Scholar 

  76. Réale, D., Reader, S.M., Sol, D., McDougall, P.T., and Dingemanse, N.J., Integrating animal temperament within ecology and evolution, Biol. Rev., 2007, vol. 82, pp. 291–318.

    Article  Google Scholar 

  77. Réale, D., Garant, D., Humphries, M.M., Bergeron, P., Careau, V., and Montiglio, P.O., Personality and the emergence of the pace-of-life syndrome concept at the population level, Philos. Trans. R. Soc., B, 2010, vol. 365, pp. 4051–4063.

  78. Reznick, D., Costs of reproduction: an evaluation of the empirical evidence, Oikos, 1985, vol. 44, no. 2, pp. 257–267.

    Article  Google Scholar 

  79. Reznick, D., Bryant, M.J., and Bashey, F., r- and K selection revisited: the role of population regulation in life history evolution, Ecology, 2002, vol. 83, pp. 1509–1520.

    Article  Google Scholar 

  80. Ricklefs, R.E. and Wikelski, M., The physiology/life-history nexus, Trends Ecol. Evol., 2002, vol. 17, pp. 462–468.

    Article  Google Scholar 

  81. Riechert, S.E. and Hedrick, A.V., A test for correlations among fitness-linked behavioural traits in the spider agelenopsis aperta (Araneae, Agelenidae), Anim. Behav., 1993, vol. 46, no. 4, pp. 669–675.

    Article  Google Scholar 

  82. Roff, D.A., The Evolution of Life Histories, New York: Chapman and Hall, 2002.

    Google Scholar 

  83. Royauté, R., Berdal, M.A., Garrison, C.R., and Dochtermann, N.A., Paceless life—A meta-analysis of the pace-of-life syndrome hypothesis, Behav. Ecol. Sociobiol., 2018, vol. 72, article 64. https://doi.org/10.1007/s00265-018-2472-z

    Article  Google Scholar 

  84. Sæther, B.E. and Bakke, Ø., Avian life history variation and contribution of demographic traits to the population growth rate, Ecology, 2000, vol. 81, pp. 642–653.

    Article  Google Scholar 

  85. Shilov, I.A., Ekologo-fiziologicheskie osnovy populyatsionnykh otnoshenii u zhivotnykh (Ecological and Physiological Bases of Population Relations in Animals), Moscow: Mosk. Gos. Univ., 1977.

  86. Sih, A., Bell, A.M., Johnson, J.C., and Ziemba, R.E., Behavioral syndromes: an integrative overview, Quart. Rev. Biol., 2004, vol. 79, pp. 241–277.

    Article  Google Scholar 

  87. Sih, A., Mathot, K.J., Moirón, M., Montiglio, P.-O., Wolf, M., and Dingemanse, N.J., Animal personality and state-behaviour feedbacks: a review and guide for empiricists, Trends Ecol. Evol., 2015, vol. 30, pp. 50–60.

    Article  Google Scholar 

  88. Sinervo, B. and Svensson, E., Correlational selection and the evolution of genomic architecture, Heredity, 2002, vol. 89, pp. 329–338.

    Article  CAS  Google Scholar 

  89. Smith, B.R. and Blumstein, D.L., Fitness consequences of personality: a metaanalysis, Behav. Ecol., 2008, vol. 19, pp. 448–455.

    Article  Google Scholar 

  90. Stamps, J.A., Growth-mortality tradeoffs and personality traits in animals, Ecol. Lett., 2007, vol. 10, pp. 355–363.

    Article  Google Scholar 

  91. Starrfelt, J. and Kokko, H., Bet-hedging—a triple trade off between means, variances and correlations, Biol. Rev., 2012, vol. 87, pp. 742–755.

    Article  Google Scholar 

  92. Stearns, S.C., The evolution of life history traits: a critique of the theory and a review of the data, Annu. Rev. Ecol. Syst., 1977, vol. 8, no. 1, pp. 145–171.

    Article  Google Scholar 

  93. Stearns, S.C., The influence of size and phylogeny on patterns of covariation among life-history traits in the mammals, Oikos, 1983, vol. 41, no. 2, pp. 173–187.

    Article  Google Scholar 

  94. Stearns, S.C., Trade-offs in life-history evolution, Funct. Ecol., 1989, vol. 3, pp. 259–268.

    Article  Google Scholar 

  95. Stearns, S.C., The Evolution of Life Histories, New York: Oxford Univ. Press, 1992.

    Google Scholar 

  96. Tarka, M., Guenther, A., Niemela, P.T., Nakagawa, S., and Noble, D.W., Sex differences in life history, behavior, and physiology along a slow-fast continuum: a meta-analysis, Behav. Ecol. Sociobiol., 2018, vol. 72, article 132. https://doi.org/10.1007/s00265-018-2534-2

    Article  Google Scholar 

  97. Tieleman, B.I., Understanding immune function as a pace of life trait requires environmental context, Behav. Ecol. Sociobiol., 2018, vol. 72, article 55. https://doi.org/10.1007/s00265-018-2464-z

    Article  Google Scholar 

  98. Trut, L.N., Early canid domestication: the farm-fox experiment: foxes bred for tamability in a 40-year experiment exhibit remarkable transformations that suggest an interplay between behavioral genetics and development, Am. Sci., 1999, vol. 87, no. 2, pp. 160–169.

    Article  Google Scholar 

  99. Trut, L.N., Gerbek, Yu.E., Kharlamova, A.V., Gulevich, R.G., and Kukekova, A.V., Domesticated foxes: molecular genetic mechanisms involved in behavioral selection, Vavilov. Zh. Genet. Sel., 2014, vol. 17, no. 2, pp. 226–233.

    Google Scholar 

  100. Vasil’eva, N.A., Savinetskaya, L.E., and Chabovsky, A.V., Large body size and a short period of ground activity do not prevent the yellow ground squirrel (Spermophilus fulvus) from growing rapidly, Zool. Zh., 2009, vol. 88, no. 3, pp. 339–343.

    Google Scholar 

  101. Wikelski, M. and Ricklefs, R.E., The physiology of life histories, Trends Ecol. Evol., 2001, vol. 16, pp. 479–481.

    Article  Google Scholar 

  102. Wikelski, M., Spinney, L., Schelsky, W., Scheuerlein, A., and Gwinner, E., Slow pace of life in tropical sedentary birds: a common-garden experiment on four stonechat populations from different latitudes, Proc. R. Soc. London, Ser. B, 2003, vol. 270, pp. 2383–2388.

    Article  Google Scholar 

  103. Williams, G.C., Pleiotropy, natural selection, and the evolution of senescence, Evolution, 1957, vol. 11, pp. 398–411.

    Article  Google Scholar 

  104. Williams, G.C., Natural selection, the cost of reproduction, and a refinement of lack’s principle, Am. Nat., 1966, vol. 100, pp. 687–690.

    Article  Google Scholar 

  105. Wilson, A.D. and Krause, J., Personality and metamorphosis: is behavioral variation consistent across ontogenetic niche shifts?, Behav. Ecol., 2012, vol. 23, no. 6, pp. 1316–1323.

    Article  Google Scholar 

  106. Wilson, D.S., Clark, A.B., Coleman, K., and Dearstyne, T., Shyness and boldness in humans and other animals, Trends Ecol. Evol., 1994, vol. 9, pp. 442–446.

    Article  Google Scholar 

  107. Wolf, M. and McNamara, J.M., On the evolution of personalities via frequency-dependent selection, Am. Nat., 2012, vol. 178, pp. 679–692.

    Article  Google Scholar 

  108. Wolf, M., van Doorn, G.S., Leimar, O., and Weissing, F.J., Life-history tradeoffs favour the evolution of animal personalitie, Nature, 2007, vol. 447, pp. 581–584.

    Article  CAS  Google Scholar 

  109. Wright, J., Bolstad, G.H., Araya-Ajoy, Y.G., and Dingemanse, N.J., Life-history evolution under fluctuating density-dependent selection and the adaptive alignment of pace-of-life syndromes, Biol. Rev., 2019, vol. 94, pp. 230–247.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to A.V. Chabovskii for discussion of a future article and comments on the text.

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 19-14-50232.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Vasilieva.

Ethics declarations

The author declares that she has no conflicts of interest. This article does not contain any studies involving animals or human participants performed by the author.

Additional information

Translated by M. Batrukova

APPENDIX

APPENDIX

Brief Glossary of Terms

Behavioral carryover—the use of behavior that is inadequate for a given context due to low behavioral plasticity.

Boldness–shyness scale—scale that determines the response to a familiar potentially dangerous situation.

Exploration (slow and thorough–fast and superficial)—a pattern for exploring new things; a slow but thorough study is opposed to a fast but superficial one.

Life-history tradeoffs—negative correlations between vital processes occurring under conditions of limited resources.

Life-history traits—characteristics of the life cycle.

Pace-of-life syndrome (POLS)—a concept relating the fast/slow life-history continuum, physiology, and personality at the intraspecific and interspecific levels.

Personality—a stable behavioral phenotype in animals; personalities are formed by several correlated traits and vary within sex and age cohorts.

Proactive–reactive continuuma scale from proactive (aggressive, active, bold, and fast exploring (proactive syndrome)) individuals to reactive (nonaggressive, inactive, shy, and thoroughly exploring) individuals.

Slow–fast life-history continuum—continuum of fast/slow life history of species; a concept that relates the life-history traits (lifespan, productivity, and maturation rate) with the physiological traits of species.

Sociability—the tendency to social contacts with conspecifics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilieva, N.A. Pace-of-Life Syndrome (POLS): Evolution of the Concept. Biol Bull Russ Acad Sci 49, 750–762 (2022). https://doi.org/10.1134/S1062359022070238

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359022070238

Keywords:

Navigation