Skip to main content
Log in

The Regenerative Capacity of Siberian Larch Cell Lines In Vitro

  • BOTANY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The results of a study of the regenerative capacity of eleven cell lines (CLs) of Siberian larch cultivated in vitro on AI nutrient medium for one to ten years are presented. The CLs differed in the productivity and ploidy of embryogenic cultures, the morphogenesis of somatic embryos, and their ability to maturate and germinate. A high regenerative capacity was found in CL6. Embryogenic cultures of this cell line produced large globular embryos and had a high productivity of the embryonal-suspensor mass (ESM) and stable ploidy. Genotyping at nine nuclear microsatellite loci of cloned larch trees showed complete identity of their CL6, from which they were obtained. At the age of seven, generative organs were formed in tree clones. In the subsequent spring–summer period, the process of micro- and macrosporogenesis was completed and pollination and seed development took place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Von Aderkas, P. and Anderson, P., Aneuploidy and polyploidization in haploid tissue cultures of Larix deciduas, Physiol. Plant., 1993, vol. 88, pp. 73–77.

    Article  Google Scholar 

  2. Von Aderkas, P. and Bonga, J.M., Plants from haploid tissue culture of Larix deciduas, Theor. App. Genet., 1993, vol. 87, nos. 1–2, pp. 225–228.

    Article  CAS  Google Scholar 

  3. Von Aderkas, P., Klimaszewska, K., and Bonga, J.M., Haploid and diploid embryogenesis in Larix leptolepis, L. decidua and their reciprocal hybrids, Can. J. For. Res., 1990, vol. 20, pp. 9–14.

    Article  Google Scholar 

  4. Von Aderkas, P., Pattanavibool, R., Hristoforoglu, K., and Ma, Y., Embryogenesis and genetic stability in long term megagametophyte-derived cultures of larch, Plant Cell Tissue Organ Cult., 2003, vol. 74, pp. 27–34.

    Article  Google Scholar 

  5. Ahn, C.H. and Choi, Y.E., In vitro clonal propagation and stable cryopreservation system for Platycladus orientalis via somatic embryogenesis, Plant Cell Tissue Organ Cult., 2017, vol. 131, no. 3, pp. 513–523.

    Article  CAS  Google Scholar 

  6. Aronen, T.S., Krajnakova, J., Häggman, H., and Ryynänen, L.A., Genetic fidelity of cryopreserved embryogenic cultures of open-pollinated Abies cephalonica, Plant Sci., 1999, vol. 142, pp. 163–172.

    Article  CAS  Google Scholar 

  7. Arrillaga, I., Guevara, M.A., Muñoz-Bertomeu, J., Lázaro-Gimeno, D., Sáez-Laguna, E., Díaz, L.M., Torralba, L., Mendoza-Ponderous, I., Segura, I., and Cervera, M.T., Selection of haploid cell lines from megagametophyte cultures of maritime pine as a DNA source for massive sequencing of the species, Plant Cell Tissue Organ Cult., 2014, vol. 118, pp. 147–155.

    Article  CAS  Google Scholar 

  8. Baranchikov, Yu.N., Factors of resistance to the larvae of gall midge Dasineura rozhkovi Mam. et Nik. (Diptera, Cecidomyiidae) in larch, Russ. J. Ecol., 2006, vol. 37, pp. 288–290.

    Article  Google Scholar 

  9. Baranchikov, Yu.N. and Malyutina, V.S., Bud growth and resistance of larches to damage by bud gall midge, Lesovedenie, 1987, no. 3, pp. 39–45.

  10. Belorussova, A.S. and Tret’yakova, I.N., Patterns of somatic embryo formation in Siberian larch: embryological aspects, Russ. J. Dev. Biol., 2008, vol. 39, no. 2, pp. 83–91.

    Article  CAS  Google Scholar 

  11. Burg, K., Helmersson, A., Bozhkov, P., and von Arnold, S., Developmental and genetic variation in nuclear microsatellite stability during somatic embryogenesis in pine, J. Exp. Bot., 2007, vol. 58, pp. 687–698.

    Article  CAS  Google Scholar 

  12. Cabezas, J.A., Morcillo, M., Velez, M.D., Diaz, L., Segura, J., Cervera, M.T., and Arrillaga, I., Haploids in conifer species: characterization and chromosomal integrity of a maritime pine cell line, Forest, 2016, vol. 7, p. 274.

    Google Scholar 

  13. Chen, C., Liewlaksaneeyanawin, C., Funda, T., Kenawy, A., Newton, C.H., and El-Kassaby, Y.A., Development and characterization of microsatellite loci in western larch (Larix occidentalis Nutt.), Mol. Ecol. Resour., 2009, vol. 9, pp. 843–845.

    Article  CAS  Google Scholar 

  14. Devey, M.E., Bell, J.C., Smith, D.N., Neale, D.B., and Moran, G.F., A genetic linkage map for Pinus radiate based on RFLP, RAPD, and microsatellite markers, Theor. Appl. Genet., 1996, vol. 92, pp. 673–679.

    Article  CAS  Google Scholar 

  15. Ditchenko, T.I., Kul’tura kletok, tkanei i organov rastenii: metodicheskie rekomendatsii k laboratornym zanyatiyam, zadaniya dlya s amostoyatel’noi raboty i kontrolya znanii studentov (Culture of Cells, Tissues, and Organs of Plants: Guidelines for Laboratory Studies, Assignments for Independent Work and Control of Students’ Knowledge), Minsk: Belorus. Gos. Univ., 2007.

  16. Dylis, N.V., Sibirskaya listvennitsa (Siberian Larch), Moscow: Mosk. O-vo Ispyt. Prir., 1947.

  17. Eastman, P., Webster, F.B., Pitel, J.A., and Roberts, D.R., Evaluation of somaclonal variation during somatic embryogenesis of interior spruce (Picea glauca engelmanii complex) using culture morphology and isozyme analysis, Plant Cell Rep., 1991, vol. 10, pp. 425–430.

    Article  CAS  Google Scholar 

  18. Endemann, M., Hristoforoglu, K., Stauber, T., and Wilhelm, E., Assessment of age-related polyploidy in Quercus robur L. somatic embryos and regenerated plants using DNA flow cytometry, Biol. Plant, 2001, vol. 44, pp. 339–345.

    Article  Google Scholar 

  19. Farshadfar, E. and Amiri, R., In vitro application of integrated selection index for screening drought tolerant genotypes in common wheat, Acta Agric. Slov., 2016, vol. 107, no. 2, pp. 335–344.

    Article  Google Scholar 

  20. Fourre, J.L., Berger, P., Niquet, L., and André, P., Somatic embryogenesis and somaclonal variation in Norway spruce: morphogenetic, cytogenetic and molecular approaches, Theor. Appl. Genet., 1997, vol. 94, pp. 159–169.

    Article  Google Scholar 

  21. Goryachkina, O.V., Pak, M.E., and Tret’yakova, I.N., Cytogenetic features of Larix sibirica (Ledeb.) embryogenic cell lines in in vitro culture, Vestn. Tomsk. Gos. Univ., Ser. Biol., 2017, no. 39, pp. 140–153.

  22. Gupta, P.K. and Durzan, D.J., Biotechnology of somatic polyembryogenesis and plantlet regeneration in loblolly pine, Biotechnology, 1987, vol. 5, no. 2, pp. 147–151.

    Google Scholar 

  23. Harvengt, L., Trontin, J.F., Reymond, I., Canlet, F., and Paques, M., Molecular evidence of true-to-type propagation of a 3-year-old Norway spruce through somatic embryogenesis, Planta, 2001, vol. 213, pp. 828–832.

    Article  CAS  Google Scholar 

  24. Hazubska-Przybył, T. and Dering, M., Somaclonal variation during Picea abies and P. omorika somatic embryogenesis and cryopreservation, Acta Biol. Cracov., Ser. Bot., 2017, vol. 59, no. 1, pp. 93–103.

    Google Scholar 

  25. Hazubska-Przybył, T., Chmielarz, P., Michalak, M., Dering, M., and Bojarczuk, K., Survival and genetic stability of Picea abies embryogenic cultures after cryopreservation using a pregrowth–dehydration method, Plant Cell Tissue Organ Cult., 2013, vol. 113, no. 2, pp. 303–313.

    Article  Google Scholar 

  26. Helmersson, A., von Arnold, S., Burg, K., and Bozhkov, P.V., High stability of nuclear microsatellite loci during the early stages of somatic embryogenesis in Norway spruce, Tree Physiol., 2004, vol. 24, pp. 1181–1186.

    Article  CAS  Google Scholar 

  27. Iroshnikov, A.I., Listvennitsy Rossii. Bioraznoobrazie i selektsiya (Larches of Russia: Biodiversity and Breeding), Moscow: VNIILM, 2004.

  28. Isabel, I.N., Tremblay, L., Michaud, M., Krusberg, L., and Hammerschlag, E., RAPDs as an aid to evaluate the genetic integrity of somatic embryogenesis-derived populations of Picea mariana (Mill) B.S.P., Theor. Appl. Genet., 1993, vol. 86, pp. 81–87.

    Article  CAS  Google Scholar 

  29. Isoda, K. and Watanabe, A., Isolation and characterization of microsatellite loci from Larix kaempferi, Mol. Ecol., 2006, vol. 6, pp. 664–666.

    Article  CAS  Google Scholar 

  30. Khasa, D.P., Jaramillo-Correa, J.P., Jaquish, B., and Bousquet, J., Contrasting microsatellite variation between subalpine and western larch, two closely related species with different distribution patterns, Mol. Ecol., 2006, vol. 15, pp. 3907–3918.

    Article  CAS  Google Scholar 

  31. Klimaszewska, K., Recovery of somatic embryos and plantlets from protoplast cultures of Larix × eurolepis, Plant Cell Rep., 1989, vol. 8, no. 8, pp. 440–444.

    Article  CAS  Google Scholar 

  32. Klimaszewska, K. and Cyr, D.R., Conifer somatic embryogenesis: I. Development, Dendrobiology, 2002, vol. 48, pp. 31–39.

    Google Scholar 

  33. Klimaszewska, K., Noceda, C., Pelletier, G., Label, P., Rodriguez, R., and Lelu-Walter, M.A., Biological characterization of young and aged embryogenic cultures of Pinus pinaster (Ait), In Vitro Cell Dev. Biol. Plant., 2009, vol. 45, pp. 20–33.

    Article  Google Scholar 

  34. Klimaszewska, K., Hargreaves, C., Lelu-Walter, M.A., and Trontin, J.F., Advances in conifer somatic embryogenesis since year 2000, in In Vitro Embryogenesis in Higher Plants, New York, NY: Humana Press, 2016, pp. 131–166.

    Google Scholar 

  35. Krajňáková, J., Sutela, S., Aronen, T., Gömöry, D., Vianello, A., and Häggman, H., Long-term cryopreservation of Greek fir embryogenic cell lines: recovery, maturation and genetic fidelity, Cryobiology, 2011, vol. 63, pp. 17–25.

    Article  Google Scholar 

  36. Krutovsky, K.V., Tretyakova, I.N., Oreshkova, N.V., Pak, M.E., Kvitko, O.V., and Vaganov, E.A., Somaclonal variation of haploid in vitro tissue culture obtained from Siberian larch (Larix sibirica Ledeb.) megagametophytes for whole genome de novo sequencing, In Vitro Cell. Dev. Biol.: Plant, 2014, vol. 50, pp. 655–664.

    CAS  Google Scholar 

  37. Lelu, M.A., Variations morphologiques et génétiques chez Picea abies obtenues après embryogenèse somatique, Ann. Rech. Sylv., AFOCEL, 1987, pp. 35–47.

    Google Scholar 

  38. Lelu-Walter, M.-A. and Pâques, L.E., Simplified and improved somatic embryogenesis of hybrid larches (Larix × eurolepis and Larix × marschlinsii). Perspectives for breeding, Ann. For. Sci., 2009, vol. 66, p. 104.

    Article  Google Scholar 

  39. Lelu, M.A., Bastien, C., Klimaszewska, K., Ward, C., and Charest, P.J., An improved method for somatic plantlet production in hybrid larch (Larix × leptoeuropaea): Part 1. Somatic embryo maturation, Plant Cell Tissue Organ Cult., 1994, vol. 36, no. 1, pp. 107–115.

    Article  CAS  Google Scholar 

  40. Lelu-Walter, M.A., Bernier-Cardou, M., and Klimaszewska, K., Clonal plant production from self-and cross-pollinated seed families of Pinus sylvestris (L.) through somatic embryogenesis, Plant Cell Tissue Organ Cult., 2008, vol. 92, no. 1, pp. 31–45.

    Article  Google Scholar 

  41. Lopes, T., Pinto, G., Loureiro, J., Costa, A., and Santos, C., Determination of genetic stability in long-term somatic embryogenic cultures and derived plantlets of cork oak using microsatellite markers, Tree Physiol., 2006, vol. 26, pp. 1145–1152.

    Article  CAS  Google Scholar 

  42. MacKay, J., Becwar, M., Park, Y., Perfetti, C., Cordero, J., Pullman, G., and Lockhart, L., Genetics of somatic embryogenesis in loblolly pine, Proc. 26th Southern Forest Tree Improvement Conference, Dean, J.F., Ed., Athens: University of Georgia, 2001, no. 48, pp. 40–47.

  43. MacKay, J.J., Becwar, M.R., Park, Y.-S., Corderro, J.P., and Pullman, G.S., Genetic control of somatic embryogenesis initiation in loblolly pine and implications for breeding, Tree Genet. Genomes, 2006, vol. 2, pp. 1–9. https://doi.org/10.1007/s11295-005-0020-2

    Article  Google Scholar 

  44. Marum, L., Rocheta, M., Maroco, J., Oliveira, M., and Miguel, C., Analysis of genetic stability at SSR loci during somatic embryogenesis in maritime pine (Pinus pinaster), Plant Cell Rep., 2009, vol. 28, pp. 673–682.

    Article  CAS  Google Scholar 

  45. Miguel, C. and Marum, L., An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond, J. Exp. Bot., 2011, vol. 62, pp. 3713–3725.

    Article  CAS  Google Scholar 

  46. Mo, L.M., von Arnold, S., and Lagererantz, U., Morphogenic and genetic stability in long term embryogenic cultures and somatic embryos of Norway spruce (Picea abies [L.] Karst.), Plant Cell Rep., 1989, vol. 8, pp. 375–378.

    Article  CAS  Google Scholar 

  47. Nkongolo, K.K. and Klimaszewska, K., Cytological and molecular relationships between Larix decidua, L. leptolepis and Larix × eurolepis: identification of species specific chromosomes and synchronization of mitotic cell, Theor. Appl. Genet., 1995, vol. 90, pp. 827–834.

    Article  CAS  Google Scholar 

  48. Nunes, S., Marum, L., Farinha, N., Pereira, V.T., Almeida, T., Sousa, D., Mano, N., Figueiredo, J., Dias, M.C., and Santos, C., Somatic embryogenesis of hybrid Pinus elliottii var. elliottii × P. caribaea var. hondurensis and ploidy assessment of somatic plants, Plant Cell Tissue Organ Cult., 2018, vol. 132, no. 1, pp. 71–84.

    Article  CAS  Google Scholar 

  49. O’Brien, E.W., Smith, D.R., Gardner, R.C., and Murray, B.G., Flow cytometric determination of genome size in Pinus, Plant Sci., 1996, vol. 115, pp. 91–99.

    Article  Google Scholar 

  50. Pak, M.E., Ivanitskaya, A.S., Dvoinina, L.M., and Tret’yakova, I.N., Embryogenic potential of long-term proliferating cell lines of Larix sibirica in vitro, Sib. Lesn. Zh., 2016, no. 1, pp. 27–38.

  51. Park, Y.-S., Conifer somatic embryogenesis and multi-varietal forestry, in Challenges and Opportunities for the World’s Forests in the 21st Century, Fenning, T., Ed., Forestry Sciences, Dordercht: Springer, 2014, vol. 81, pp. 425–439.

  52. Pravdin, L.F., Budaragin, V.A., Kruklis, M.V., and Shershukova, O.P., Method of chromosomal study of conifers I, Lesovedenie, 1972, no. 2, pp. 67–75.

  53. Pukhal’skii, V.A., Solov’ev, A.A., Badaeva, E.D., and Yurtsev, V.N., Praktikum po tsitologii i tsitogenetike rastenii (A Practical Course in Cytology and Cytogenetics of Plants), Moscow: Kolos, 2007.

  54. Rahman, M. and Rajora, O., Microsatellite DNA somaclonal variation in micropropagated trembling aspen (Populus tremuloides), Plant Cell Rep., 2001, vol. 20, pp. 531–536.

    Article  CAS  Google Scholar 

  55. Rozhkov, A.S., Khlimankova, E.S., and Stepanchuk, E.S., Vosstanovitel’nye protsessy u khvoinykh pri defoliatsii (Recovery Processes in Conifers during Defoliation), Novosibirsk: Nauka, Sib. Otd., 1991.

  56. Salajova, T. and Salaj, J., Somatic embryogenesis in European black pine (Pinus nigra Arn.), Biol. Plant., 1992, vol. 34, pp. 213–218.

    Article  Google Scholar 

  57. Shmidt, V.M., Matematicheskie metody v botanike. Uchebnoe posobie (Mathematical Methods in Botany: Tutorial), Leningrad: Leningr. Univ., 1984.

  58. Thompson, R.G. and von Aderkas, P., Somatic embryogenesis and plant regeneration from immature embryos of western larch, Plant Cell Rep., 1992, vol. 11, no. 8, pp. 379–385.

    Article  CAS  Google Scholar 

  59. Tremblay, L., Levasseur, C., and Tremblay, F.M., Frequency of somaclonal variation in plants of black spruce (Picea mariana, Pinaceae) and white spruce (P. glauca, Pinaceae) derived from somatic embryogenesis and identification of some factors involved in genetic instability, Am. J. Bot., 1999, vol. 86, pp. 1373–1381.

    Article  CAS  Google Scholar 

  60. Tret’yakova, I.N., Method for microclonal propagation of Siberian larch in in vitro culture through somatic embryogenesis on AI medium for plantation forestry, RF Patent No. 2456344, 2012. http://www.freepatent.ru/images/patents/5/2456344/patent-2456344.pdf.

  61. Tret’yakova, I.N. and Barsukova, A.V., Conservation of the gene pool of coniferous species of Siberia using somatic embryogenesis in vitro—a modern biotechnological method, Khvoinye Boreal. Zony, 2010, vol. 27, nos. 1–2, pp. 203–206.

    Google Scholar 

  62. Tret’yakova, I.N. and Barsukova, A.S., Somatic embryogenesis in in vitro culture of three larch species, Russ. J. Dev. Biol., 2012, vol. 43, no. 6, pp. 353–361.

    Article  Google Scholar 

  63. Tret’yakova, I.N. and Izhboldina, M.V., Features of the growth of embryogenic callus and the production of somatic embryos in Siberian stone pine, Khvoinye Boreal. Zony, 2008, vol. 25, nos. 1–2.

  64. Tret’yakova, I.N. and Park, M.E., Somatic polyembriogenesis of Larix sibirica in embryogenic in vitro culture, Russ. J. Dev. Biol., 2018, vol. 49, no. 4, pp. 222–233.

    Article  Google Scholar 

  65. Tret’yakova, I.N., Baranchikov, Yu.N., Buglova, L.V., Belorussova, A.S., and Romanova, L.I., Features of the formation of generative organs of Siberian larch and their morphogenetic potential, Usp. Sovrem. Biol., 2006, vol. 126, no. 5, pp. 472–481.

    Google Scholar 

  66. Tret’yakova, I.N., Ivanitskaya, A.S., and Park, M.E., Productivity of embryogenic cell lines and their somaclonal variability in Siberian larch in vitro, Lesovedenie, 2015, no. 1, pp. 27–35.

  67. Tret’yakova, I.N., Park, M.E., Ivanitskaya, A.S., and Oreshkova, N.V., Peculiarities of somatic embryogenesis of long-term proliferating embryogenic cell lines of Larix sibirica in vitro, Russ. J. Plant Physiol., 2016, vol. 63, no. 6, pp. 800–810.

    Article  Google Scholar 

  68. Vendrame, W.A., Kochert, G., and Wetzstein, H.Y., AFLP analysis of variation in pecan somatic embryos, Plant Cell Rep., 1999, vol. 18, pp. 853–857.

    Article  CAS  Google Scholar 

  69. De Verno, L.L., Park, Y.S., Bonga, J.M., and Barrett, J.D., Somaclonal variation in cryopreserved embryogenic clones of white spruce (Picea glauca (Moench) Voss.), Plant Cell Rep., 1999, vol. 18, pp. 948–953.

    Article  CAS  Google Scholar 

  70. Wang, X.X., Lu, L.D., Hao, H.Q., Teng, N.J., Chen, T., Guo, Y.M., Yang, Y.G., Guo, Z.C., and Lin, J.X., High-efficiency somatic embryogenesis and morphohistology and histochemistry of somatic embryo development in Larix leptolepis Gordon, For. Stud. China, 2007, vol. 9, no. 3, pp. 182–188.

    Article  CAS  Google Scholar 

  71. Wilhelm, E., Hristoforoglu, K., Fluch, S., and Burg, K., Detection of microsatellite instability during somatic embryogenesis of oak, Plant Cell Rep., 2005, vol. 23, pp. 790–795.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported in part by the Russian Foundation for Basic Research, the Government of the Krasnoyarsk Territory, and the Krasnoyarsk Regional Fund for Support of Scientific and Scientific and Technical Activities within the framework of scientific projects no. 19-44-240009 and RFBR-Bel_a no. 18-54-00010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Tretyakova.

Ethics declarations

The authors declare no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by M. Shulskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tretyakova, I.N., Park, M.E., Oreshkova, N.V. et al. The Regenerative Capacity of Siberian Larch Cell Lines In Vitro. Biol Bull Russ Acad Sci 49, 609–619 (2022). https://doi.org/10.1134/S1062359022050193

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359022050193

Keywords:

Navigation