Skip to main content
Log in

Effect of Low Temperature on the Intensity of Oxidative Processes and the Activity of Antioxidant Enzymes in Wheat Plants at Optimal and Excessive Zinc Concentrations in the Root Medium

  • PLANT PHYSIOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The effects of low temperature (4°C) on the rate of lipid peroxidation and activities of superoxide dismutase and peroxidase in the roots and leaves of winter wheat (Triticum aestivum L.) plants were determined under laboratory conditions. The root medium contained the optimal (2 μM) zinc concentrations or high ones (1000 μM). It was found that, under optimal mineral nutrition, such cooling did not intensify the oxidative processes in the wheat leaves and temporarily increased them in the roots. This witnesses to the successful cold acclimation of the plants. At an excessive zinc concentration, the exposure to low temperature enhanced lipid peroxidation in both the roots and the leaves. This effect might be, to some extent, accounted for by rather weak activities of said antioxidant enzymes and incoordination of their functions in the chilled plants. In general, the revealed attenuation of the plant capacity to sustain the cellular redox balance under a joint impact of the applied stress-factors entails oxidative stress and stronger growth inhibition that, as a result, negatively affects the plants’ viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Apel, K. and Hirt, H., Reactive oxygen species: metabolism, oxidative stress, and signal transduction, Ann. Rev. Plant Biol., 2004, vol. 55, pp. 373–399.

    CAS  Google Scholar 

  2. Di Baccio, D., Kopriva, S., Sebastiani, L., and Rennenberg, H., Does glutathione metabolism have a role in the defense of poplar against Zn excess?, New Phytol., 2005, vol. 167, pp. 73–80.

    CAS  PubMed  Google Scholar 

  3. Barrameda-Medina, Y., Montesinos-Pereira, D., Romero, L., Blasco, B., and Ruiz, J.M., Role of GSH homeostasis under Zn toxicity in plants with different Zn tolerance, Plant Sci., 2014, vol. 227, pp. 110–121.

    CAS  PubMed  Google Scholar 

  4. Beauchamp, C. and Fridovich, I., Superoxide dismutase: improved assays and an assay applicable to acrylamide gels, Anal. Biochem., 1971, vol. 44, pp. 276–287.

    CAS  PubMed  Google Scholar 

  5. Beck, E.H., Fettig, S., Kanake, C., Hartig, K., and Bhattari, T., Specific and unspecific responses of plants to cold and drought stress, J. Biosci., 2007, vol. 32, pp. 501–510.

    CAS  PubMed  Google Scholar 

  6. Blasco, B., Graham, N., and Broadley, M.R., Antioxidant response and carboxylate metabolism in Brassica rapa exposed to different external Zn, Ca and Mg supply, J. Plant Physiol., 2015, vol. 176, pp. 16–24.

    CAS  PubMed  Google Scholar 

  7. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    CAS  PubMed  Google Scholar 

  8. Broadley, M.R., White, P.J., Hammond, J.P., Zelko, I., and Lux, A., Zinc in plants, New Phytol., 2007, vol. 173, pp. 677–702.

    CAS  PubMed  Google Scholar 

  9. Chakraborty, A. and Bhattacharjee, S., Differential competence of redox-regulated mechanism under extremes of temperature determines growth performances and cross tolerance in two indica rice cultivars, J. Plant Physiol., 2015, vol. 176, pp. 65–77.

    CAS  PubMed  Google Scholar 

  10. Chen, S.L. and Kao, C.H., Prior temperature exposure affects subsequent Cd-induced ethylene production in rice leaves, Plant Sci., 1995, vol. 104, pp. 135–138.

    CAS  Google Scholar 

  11. Cuypers A., Hendrix S., Amaral des Reis, R., De Smet, S., Deckers, J., Gielen, H., Jozefczak, M., Loix, C., Vercampt, H., Vangronsveld, J., and Keunen, E., Hydrogen peroxide, signaling in disguise during metal phytotoxicity, Front. Plant Sci., 2016, vol. 7, p. 470. https://doi.org/10.3389/fpls.2016.00470

    Article  PubMed  PubMed Central  Google Scholar 

  12. Czarnocka, W. and Karpiński, S., Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses, Free Radical Biol. Med., 2018, vol. 122, pp. 4–20.

    CAS  Google Scholar 

  13. Dai, F., Huang, Y., Zhou, M., and Zhang, G., The influence of cold acclimation on antioxidative enzymes and antioxidants in sensitive and tolerant barley cultivars, Biol. Plant., 2009, vol. 53, pp. 257–262.

    CAS  Google Scholar 

  14. Das, K. and Roychoudhury, A., Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants, Front. Environ. Sci., 2014, vol. 2, p. 53. https://doi.org/10.3389/fenvs.2014.00053

    Article  Google Scholar 

  15. Dat, J., Vandenabeele, S., Vranová, E., Van Montagu, M., Inzé, D., and Van Breusegem, F., Dual action of the stress active oxygen species during plant stress responses, Cell Mol. Life Sci., 2000, vol. 57, pp. 779–795.

    CAS  PubMed  Google Scholar 

  16. Garmash, E.V. and Golovko, T.K., Effect of cadmium on growth and respiration of barley plants grown under two temperature regimes, Russ. J. Plant Physiol., 2009, vol. 56, pp. 343–347.

    CAS  Google Scholar 

  17. Gill, S.S. and Tuteja, N., Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants, Plant Physiol. Biochem., 2010, vol. 48, pp. 909–930.

    CAS  PubMed  Google Scholar 

  18. Heath, R.L. and Packer, L., Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation, Arch. Biochem. Biophys., 1968, vol. 125, pp. 189–198.

    CAS  PubMed  Google Scholar 

  19. Hüner, N.P.A., Öquist, G., and Sarhan, F., Energy balance and acclimation to light and cold, Trends Plant Sci., 1993, vol. 3, pp. 224–230.

    Google Scholar 

  20. Ivanov, A.G., Rosso, D., Savitch, L.V., Stachula, P., Rosembert, M., Öquist, G., Hurry, V., and Hüner, N.P.A., Implications of alternative electron sinks in increased resistance of PSII and PSI photochemistry to high light stress in cold-acclimated Arabidopsis thaliana, Photosynth. Res., 2012, vol. 113, pp. 191–206.

    CAS  PubMed  Google Scholar 

  21. John, R., Anjum, N.A., Sopory, S.K., Akram, N.A., and Ashraf, M., Some key physiological and molecular processes of cold acclimation, Biol. Plant., 2016, vol. 60, pp. 603–618.

    CAS  Google Scholar 

  22. Kaznina, N.M., Batova, Yu.V., Laidinen, G.F., Sherudilo, E.G., and Titov, A.F., Low-temperature adaptation of winter wheat seedlings under excessive zinc content in the root medium, Russ. J. Plant Physiol., 2019, vol. 66, no. 5, pp. 763–770.

    CAS  Google Scholar 

  23. Keunen, E., Peshev, D., Vangronsveld, J., Van Den Ende, W., and Cuypers, A., Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept, Plant, Cell Environ., 2013, vol. 36, pp. 1242–1255.

    CAS  Google Scholar 

  24. Klimov, S.V., Burakhanova, E.A., Alieva, G.P., and Suvorova, T.A., Ability of winter wheat plants to become hardened against frost related to peculiarities of carbon dioxide exchange, biomass synthesis, and various forms of water-soluble carbohydrates, Biol. Bull. (Moscow), 2010, vol. 37, no. 2, pp. 168–173.

    CAS  Google Scholar 

  25. Kolupaev, Yu.E., Plant cell antioxidants, their role in ROS signaling and plant resistance, Usp. Sovrem. Biol., 2016, vol. 136, no. 2, pp. 181–198.

    Google Scholar 

  26. Kolupaev, Yu.E., Ryabchun, N.I., Vayner, A.A., Yastreb, T.O., and Oboznyi, A.I., Antioxidant enzyme activity and osmolyte content in winter cereal seedlings under hardening and cryostress, Russ. J. Plant Physiol., 2015, vol. 62, pp. 499–506.

    CAS  Google Scholar 

  27. Koussevitzky, S., Suzuki, N., Huntington, S., Armijo, L., Sha, W., Cortes, D., Shulaev, V., and Mittler, R., Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination, J. Biol. Chem., 2008, vol. 283, no. 49, pp. 34197–34203.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kreslavski, V.D., Los, D.A., Allakhverdiev, S.I., and Kuznetsov, Vl.V., Signaling role of reactive oxygen species in plants under stress, Russ. J. Plant Physiol., 2012, vol. 59, no. 2, pp. 141–154.

    CAS  Google Scholar 

  29. Kuznetsov, Vl.V., Physiological mechanisms of adaptation and the creation of stress-tolerant transgenic plants, in Problemy eksperimental’noi botaniki. VII Kuprevichskie chteniya (Problems of Experimental Botany. VII Kuprevich Memorial Lectures), Minsk: Tekhnalogiya, 2009, pp. 5–78.

  30. Li, T.Q., Lu, L.L., Zhu, E., Gupta, D.K., Islam, E., and Yang, X.E., Antioxidant responses in roots of two contrasting Sedum alfredii Hance ecotypes under elevated zinc concentrations, Russ. J. Plant Physiol., 2008, vol. 55, pp. 799–807.

    CAS  Google Scholar 

  31. Li, X., Yang, Y., Jia, L., Chen, H., and Wei, X., Zn-induced oxidative damage, antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants, Ecotoxicol. Environ. Saf., 2013, vol. 89, pp. 150–157.

    CAS  PubMed  Google Scholar 

  32. Liptáková, L., Huttová, J., Mistrík, I., and Tamás, L., Enhanced lipoxygenase activity is involved in the stress response but not in the harmful lipid peroxidation and cell death of short-term cadmium-treated barley root tip, J. Plant Physiol., 2013, vol. 170, pp. 646–652.

    PubMed  Google Scholar 

  33. Lux, A., Martinka, M., Vaculík, M., and White, P.J., Root responses to cadmium in the rhizosphere: a review, J. Exp. Bot., 2011, vol. 62, pp. 21–37.

    CAS  PubMed  Google Scholar 

  34. Maehly, A.C. and Chance, B., The assay of catalase and peroxidase, Meth. Biochem. Anal., 1954, vol. 1, pp. 357–424.

    CAS  Google Scholar 

  35. Matuszak-Slamani, R. and Brzóstowicz, A., Influence of salt stress on growth and frost resistance of three winter cereals, Int. Agrophys., 2015, vol. 29, pp. 193–200.

    CAS  Google Scholar 

  36. Mittal, D., Madhyastha, D.A., and Grover, A., Gene expression analysis in response to low and high temperature and oxidative stresses in rice: combination of stresses evokes different transcriptional changes as against stresses applied individually, Plant Sci., 2012, vol. 197, pp. 102–113.

    CAS  PubMed  Google Scholar 

  37. Mittler, R., Oxidative stress, antioxidants and stress tolerance, Trends Plant Sci., 2002, vol. 7, pp. 405–410.

    CAS  PubMed  Google Scholar 

  38. Mittler, R., Abiotic stress, the field environment and stress combination, Trends Plant Sci., 2006, vol. 11, pp. 15–19.

    CAS  PubMed  Google Scholar 

  39. Panda, S.K., Chaudhury, I., and Khan, M.H., Heavy metals induce lipid peroxidation and affect antioxidants in wheat leaves, Biol. Plant., 2003, vol. 46, pp. 289–294.

    CAS  Google Scholar 

  40. Polesskaya, O.G., Kashirina, E.I., and Alekhina, N.D., Changes in the activity of antioxidant enzymes in wheat leaves and roots as a function of nitrogen source and supply, Russ. J. Plant Physiol., 2004, vol. 51, pp. 615–620.

    CAS  Google Scholar 

  41. Popov, V.N., Antipina, O.V., and Trunova, T.I., Lipid peroxidation during low-temperature adaptation of cold-sensitive tobacco leaves and roots, Russ. J. Plant Physiol., 2010, vol. 57, pp. 144–152.

    CAS  Google Scholar 

  42. Posmyk, M.M., Bailly, C., Szafrańska, K., Janas, K.M., and Corbineau, F., Antioxidant enzymes and isoflavonoids in chilled soybean (Glycine max (L.) Merr.) seedlings, J. Plant Physiol., 2005, vol. 162, pp. 403–412.

    CAS  PubMed  Google Scholar 

  43. Radyuk, M.S., Domanskaya, I.N., Shcherbakov, R.A., and Shalygo, N.V., Effect of low above-zero temperature on the content of low-molecular antioxidants and activities of antioxidant enzymes in green barley leaves, Russ. J. Plant Physiol., 2009, vol. 56, pp. 175–180.

    CAS  Google Scholar 

  44. Rakhmankulova, Z.F., Fedyaev, V.V., Abdullina, O.A., and Usmanov, I.Yu., Formation of adaptive mechanisms in wheat and maize to increased zinc content, Vestn. Bashkir. Univ., 2008, vol. 13, no. 1, pp. 43–46.

    Google Scholar 

  45. Remans, T., Opdenakker, K., Guisez, Y., Carleer, R., Schat, H., Vangronsveld, J., and Cuypers, A., Exposure of Arabidopsis thaliana to excess Zn reveals Zn-specific oxidative stress signature, Environ. Exp. Bot., 2012, vol. 84, pp. 61–71.

    CAS  Google Scholar 

  46. Repkina, N.S., Talanova, V.V., Titov, A.F., and Bukareva, I.V., The response of wheat plants (Triticum aestivum L.) to the separate and combined action of low temperature and cadmium, Tr. Kar. Nauchn. Tsentra Ross. Akad. Nauk, Ser. Eksp. Biol., 2014, no. 5, pp. 133–139.

  47. Ricachenevsky, F.K., Menguer, P.K., Sperotto, R.A., and Fett, J.P., Got to hide your Zn away: molecular control of Zn accumulation and biotechnological application, Plant Sci., 2015, vol. 236, pp. 1–17.

    CAS  PubMed  Google Scholar 

  48. del Rio, L.A., Corpas, F.J., Sandalio, L.M., Palma, J.M., Gomez, M., and Barrozo, J.B., Reactive oxygen species, antioxidant system and nitric oxide in peroxisomes, J. Exp. Bot., 2002, vol. 53, pp. 1255–1272.

    CAS  PubMed  Google Scholar 

  49. Rivero, R.M., Mestre, T.C., Mittler, R., Rubio, F., Garsia-Sanchez, F., and Martinez, V., The combined effect of salinity and heat reveals a specific physiological, biochemical and molecular response in tomato plants, Plant, Cell Environ., 2014, vol. 37, pp. 1059–1073.

    CAS  Google Scholar 

  50. Rizhsky, L., Liang, H., and Mittler, R., The combined effect of drought stress and heat shock on gene expression in tobacco, Plant Physiol., 2002, vol. 130, pp. 1143–1151.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S., and Mittler, R., When defense pathways collide. the response of Arabidopsis to a combination of drought and heat stress, Plant Physiol., 2004, vol. 134, pp. 1683–1696.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Rogozhin, V.V., Verkhoturov, V.V., and Kurilyuk, T.T., The antioxidant system of wheat seeds during germination, Biol. Bull., 2001, vol. 28, pp. 126–133.

    CAS  Google Scholar 

  53. Scebba, F., Sebastian, L., and Vitagliano, C., Changes in activity of antioxidative enzymes in wheat (Triticum aestivum) seedlings under cold acclimation, Physiol. Plant., 1998, vol. 104, pp. 747–752.

    CAS  Google Scholar 

  54. Sewelam, N., Oshima, Y., Mitsuda, N., and Ohme-Takegi, M., A step towards understanding plant responses to multiple environmental stresses: a genome-wide study, Plant, Cell Environ., 2014, vol. 37, pp. 2024–2035.

    CAS  Google Scholar 

  55. Silva, E.N., Ferreira-Silva, S.L., Fontenele, A.V., Ribeiro, R.V., Viégas, R.A., and Silveira, J.A.G., Photosynthetic changes and protective mechanisms against oxidative damage subjected to isolated and combined drought and heat stresses in Jatropha curcas plants, J. Plant Physiol., 2010, vol. 167, pp. 1157–1164.

    CAS  PubMed  Google Scholar 

  56. Sin’kevich, M.S., Naraikina, N.V., and Trunova, T.I., Processes hindering activation of lipid peroxidation in cold-tolerant plants under hypothermia, Russ. J. Plant Physiol., 2011, vol. 58, pp. 1020–1026.

    Google Scholar 

  57. Sin’kevich, M.S., Kropocheva, E.V., and Trunova, T.I., Changes in superoxide dismutase activity in Arabidopsis thaliana plants during hardening, in Novye i netraditsionnye rasteniya i perspektiva ikh ispol’zovaniya (New and Non-Traditional Plants and the Prospects of Their Use), Moscow: VNIISSOK, 2015, pp. 157–162.

  58. Titov, A.F., Drozdov, S.N., Kritenko, S.P., and Talanova, V.V., On the role of specific and nonspecific reactions in the processes of thermal adaptation of actively growing plants, Fiziol. Rast., 1983, vol. 30, no. 3, pp. 544–551.

    Google Scholar 

  59. Titov, A.F., Akimova, T.V., Talanova, V.V., and Topchieva, L.V., Ustoichivost’ rastenii v nachal’nyi period deistviya neblagopriyatnykh temperatur (Plant Resistance in the Initial Period of Exposure to Unfavorable Temperatures), Moscow: Nauka, 2006.

  60. Titov, A.F., Talanova, V.V., Kaznina, N.M., and Laidinen, G.F., Ustoichivost’ rastenii k tyazhelym metallam (Plant Resistance to Heavy Metals), Inst. Biol. Karel. Nauchn. Tsentra Ross. Akad. Nauk, Petrozavodsk: Karel. Nauchn. Tsentr Ross. Akad. Nauk, 2007.

  61. Titov, A.F., Kaznina, N.M., and Talanova, V.V., Tyazhelye metally i rasteniya (Heavy Metals and Plants), Petrozavodsk: Karel. Nauchn. Tsentr Ross. Akad. Nauk, 2014.

  62. Wang, C., Zhang, S.H., Wang, P.F., Hou, J., Zhang, W.J., Li, W., and Lin, Z.P., The effect of excess Zn on mineral nutrition and antioxidative response in rapeseed seedlings, Chemosphere, 2009, vol. 75, pp. 1468–1476.

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was carried out under state order (projects no. 0221-2017-0051 and 0218-2019-0074) for the Karelian Research Center of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the work.

Corresponding author

Correspondence to Yu. V. Batova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Aver’yanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batova, Y.V., Kaznina, N.M. & Titov, A.F. Effect of Low Temperature on the Intensity of Oxidative Processes and the Activity of Antioxidant Enzymes in Wheat Plants at Optimal and Excessive Zinc Concentrations in the Root Medium. Biol Bull Russ Acad Sci 48, 156–164 (2021). https://doi.org/10.1134/S1062359021010039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359021010039

Navigation