Skip to main content
Log in

Effect of Zinc Deficiency on Gene Expression and Antioxidant Enzyme Activity in Barley Plants at Optimal and Low Temperatures

  • PLANT PHYSIOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

In a controlled environment, the dynamics of the activity of two key antioxidant enzymes, superoxide dismutase (SOD) and peroxidase (PO), and the expression of its encoding genes (HvSOD1 and HvPRX07) were studied at the temperatures of 22 and 4°C in barley plants growing at the optimal zinc content (2 μM) in the substrate and its deficiency (0 μM). It was found that at 22°C, a zinc deficiency did not lead to an increase in the intensity of lipid peroxidation (LPO) in the barley roots and leaves, which correlates with an increase in the number of transcripts of the genes studied and an increase in the SOD and PO activity. Under hypothermia, metal deficiency caused an increase in oxidative processes in the roots of seedlings, which is associated with the absence of an increase in the activity of antioxidant enzymes, despite an increase in gene expression. At the same time, the intensification of oxidative processes did not occur in the leaves. The protection of leaf cells from oxidative stress under combined action of zinc deficiency and low temperature may be associated with an increase in the activity of other (nonenzymatic) components of the antioxidant system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Abu-Romman, S. and Shatnawi, M., Isolation and expression analysis of chloroplastic copper/zinc superoxide dismutase gene in barley, S. Afr. J. Bot., 2011, vol. 77, pp. 328–334.

    Article  CAS  Google Scholar 

  2. Alloway, B.J., Zinc in Soil and Crop Nutrition, Brussels, Paris: IZA and IFA, 2008, 2nd ed.

    Google Scholar 

  3. Apel, K. and Hirt, H., Reactive oxygen species: metabolism, oxidative stress and signal transduction, Annu. Rev. Plant Biol., 2004, vol. 55, pp. 373–399.

    Article  CAS  Google Scholar 

  4. Bradford, M.M., A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein–dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  CAS  Google Scholar 

  5. Broadley, M.R., Zinc in plants, New Phytol., 2007, vol. 173, pp. 677–702.

    Article  CAS  Google Scholar 

  6. Cakmak, I., Possible roles of zinc in protecting plant cells from damage by reactive oxygen species, New Phytol., 2000, vol. 146, pp. 185–205.

    Article  CAS  Google Scholar 

  7. Cakmak, I., Öztürk, L., Eker, S., Torun, B., Kalfa, H.I., and Yilmaz, A., Concentration of zinc and activity of copper/zinc-superoxide dismutase in leaves of rye and wheat cultivars differing in sensitivity to zinc deficiency, J. Plant Physiol., 1997, vol. 151, pp. 91–95.

    Article  CAS  Google Scholar 

  8. Gill, S.S. and Tuteja, N., Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants, Plant Physiol. Biochem., 2010, vol. 4, pp. 909–930.

    Article  Google Scholar 

  9. Hacisalihoglu, G. and Kochian, L., How do some plants tolerate low level of soil zinc? Mechanisms of zinc efficiency in crop plants, New Phytol., 2003, vol. 159, pp. 341–350.

    Article  CAS  Google Scholar 

  10. Hacisalihoglu, G., Hart, J.J., Wang, Y-H., Cakmak, I., and Kochian, L.V., Zinc efficiency is correlated with enhanced expression and activity of zinc-requiring enzymes in wheat, Plant Physiol., 2003, vol. 131, pp. 595–602.

    Article  CAS  Google Scholar 

  11. Hajiboland, R. and Amirazad, F., Growth, photosynthesis and antioxidant defense system in Zn-deficient red cabbage plants, Plant, Soil Environ., 2010, vol. 56, pp. 209–217.

    Article  CAS  Google Scholar 

  12. Heath, R.L. and Packer, L., Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation, Arch. Biochem. Biophys., 1968, vol. 125, pp. 189–198.

    Article  CAS  Google Scholar 

  13. Höller, S., Hajirezaei, M-R., von Wirén, N., and Frei, M., Ascorbate metabolism in rice genotypes differing in zinc efficiency, Planta, 2014, vol. 239, pp. 367–379.

    Article  Google Scholar 

  14. Kaznina, N.M. and Titov, A.F., Influence of zinc deficiency on physiological processes and productivity of cultivated cereals, Usp. Sovrem. Biol., 2019, vol. 139, pp. 280–291.

    Google Scholar 

  15. Kolupaev, Yu.E., Ryabchun, N.I., Vayner, A.A., Yastreb, T.O., and Oboznyi, A.I., Antioxidant enzyme activity and osmolyte content in winter cereal seedlings under hardening and cryostress, Russ. J. Plant Physiol., 2015, vol. 62, pp. 499–506.

    Article  CAS  Google Scholar 

  16. Kristensen, B.K., Bloch, H., and Rasmussen, S.K., Barley coleoptile peroxidases. Purification, molecular cloning and induction by pathogens, Plant Physiol., 1999, vol. 120, pp. 501–512.

    Article  CAS  Google Scholar 

  17. Li, Y., Zhang, Y., Shi, D., Kiu, X., Qin, J., Ge, Q., Xu, L., Pan, X., Li, W., Zhu, Y., and Xu, J., Spatial-temporal analysis of zinc homeostasis reveals the response mechanisms to acute zinc deficiency in Sorhum bicolor, New Phytol., 2013, vol. 200, pp. 1102–1115.

    Article  CAS  Google Scholar 

  18. Livak, K.J., Thomas, D., and Schmittgen, T.D., Methods, 2001, vol. 25, pp. 402–408.

    Article  CAS  Google Scholar 

  19. Mukhopadhyay, M., Das, A., Subba, P., Bantawa, P., Sarkar, B., and Ghosh, P., Structural, physiological, and biochemical profiling of tea plants under zinc stress, Biol. Plant., 2013, vol. 57, pp. 474–480.

    Article  CAS  Google Scholar 

  20. Pandey, N., Gupta, B., and Pathak, G.C., Antioxidant response of pea genotypes to zinc deficiency, Russ. J. Plant Physiol., 2012, vol. 59, pp. 198–205.

    Article  CAS  Google Scholar 

  21. Pinton, R., Cakmak, I., and Marschner, H., Zinc deficiency enhanced NAD(P)H-dependent superoxide radical production in plasma membrane vesicles isolated from roots of bean plants, J. Exp. Bot., 1994, vol. 45, pp. 45–50.

    Article  CAS  Google Scholar 

  22. Polesskaya, O.G., Kashirina, E.I., and Alekhina, N.D., Changes in the activity of antioxidant enzymes in wheat leaves and roots as a function of nitrogen source and supply, Russ. J. Plant Physiol., 2004, vol. 51, pp. 615–620.

    Article  CAS  Google Scholar 

  23. Radyuk, M.S., Domanskaya, I.N., Shcherbakov, R.A., and Shalygo, N.V., Effect of low above-zero temperature on the content of low-molecular antioxidants and activities of antioxidant enzymes in green barley leaves, Russ. J. Plant Physiol., 2009, vol. 56, pp. 175–180.

    Article  CAS  Google Scholar 

  24. Rose, M.T., Rose, T.J., Pariasca-Tanaka, J., Yoshihashi, T., Neuweger, H., Goesmann, A., Frei, M., and Wissuva, M., Root metabolic response of rice (Oriza sativa L.) genotypes with contrasting tolerance to zinc deficiency and bicarbonate excess, Planta, 2012, vol. 236, pp. 959–973.

    Article  CAS  Google Scholar 

  25. Rudenko, N.N., Ignatova, L.K., Fedorchuk, T.P., and Ivanov, B.N., Carbonic anhydrases in photosynthetic cells of higher plants, Biochemistry (Moscow), 2015, vol. 80, pp. 684–687.

    Google Scholar 

  26. Sin’kevich, M.S., Selivanov, A.A., Antipina, O.V., Kropocheva, E.V., Alieva, G.P., Suvorova, T.A., Astakhova, N.V., and Moshkov, I.E., Activities of antioxidant enzymes of Arabidopsis thaliana plants during cold hardening to hypothermia, Russ. J. Plant Physiol., 2016, vol. 63, pp. 749–753.

    Article  Google Scholar 

  27. Sinclair, S.A. and Kramer, U., The zinc homeostasis network of land plants, Biochim. Biophys. Acta, 2012, vol. 1823, pp. 1553–1567.

    Article  CAS  Google Scholar 

  28. Tewari, R.K., Kumar, P., and Sharma, P.N., An effective antioxidant defense provides protection against zinc deficiency-induced oxidative stress in Zn-efficient maize plants, J. Plant Nutr. Soil Sci., 2019, vol. 182, pp. 701–707.

    Article  CAS  Google Scholar 

  29. Wang, H. and Jin, J., Effects of zinc deficiency and drought on plant growth and metabolism of reactive oxygen species in maize (Zea mays L.), Agric. Sci. China, 2007, vol. 6, pp. 988–995.

    Article  CAS  Google Scholar 

  30. Wang, Y., Wang, Q., Zhao, Y., Han, G., and Zhu, S., Systematic analysis of maize class iii peroxidase gene family reveals a conserved subfamily in abiotic stress response, Gene, 2015, vol. 566, pp. 95–108.

    Article  CAS  Google Scholar 

  31. Zago, M.P. and Oteiza, P.I., The antioxidant properties of zinc: interactions with iron and antioxidants, Free Radical Biol. Med., 2001, vol. 31, pp. 266–274.

    Article  CAS  Google Scholar 

  32. Zeng, H., Zhang, X., Ding, M., Zhang, X., and Zhu, Y., Transcriptome profiles of soybean leaves and roots in response to zinc deficiency, Physiol. Plant., 2019, vol. 167, pp. 330–351.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was conducted using the equipment of the Center for Joint Use at the Karelian Research Center of the Russian Academy of Sciences.

Funding

The work was carried out within the framework of a State Assignment of the Karelian Research Center of the Russian Academy of Sciences, project no. 0218-2019-0074.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Kaznina.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by G. Levit

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaznina, N.M., Batova, Y.V., Repkina, N.S. et al. Effect of Zinc Deficiency on Gene Expression and Antioxidant Enzyme Activity in Barley Plants at Optimal and Low Temperatures. Biol Bull Russ Acad Sci 49, 636–644 (2022). https://doi.org/10.1134/S1062359022010083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359022010083

Keywords:

Navigation