Skip to main content
Log in

Effect of Fractionated Low-LET Radiation Exposure on Cervical Cancer Stem Cells under Experimental and Clinical Conditions

  • RADIOBIOLOGICAL BASES OF TUMOR RADIATION THERAPY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Numerous studies have proven the high resistance of cancer stem cells (CSCs) to a single-dose low-LET ionizing radiation exposure in vitro. These data are the basis for the assumption about the important role of CSCs in cancer recurrence after conventional radiation therapy. However, the patterns and mechanisms of fractionated radiation effects on this population of cells have not been studied enough, and there are only a few publications regarding cervical cancer. Therefore, the purpose of this work is to elucidate the quantitative changes in the CSC population after low-LET radiation exposure using the conventional fractionation regimen in vitro (in cervical cancer cell lines HeLa and SiHa) and in vivo (in cervical scrapings from patients with squamous cell cervical cancer during radiation therapy). Using flow cytometry, the proportion of CSCs was measured in these cell lines after each dose fraction until a cumulative dose of 10 Gy was reached, and in clinical samples of 26 patients before treatment and after irradiation at a cumulative dose of 10 Gy to point A. CSCs were identified in cell cultures by the ability of these cells to pump out the fluorescent dye Hoechst 33 342 and form a side population (SP) and in cervical scrapings by the CD44+CD24low immunophenotype. A statistically significant increase in the proportion of CSCs was found after fractionated irradiation of cervical cell cultures in the range of 2–10 Gy, as compared with the nonirradiated control. High individual variability in the proportion of CD44+CD24low CSCs was detected in cervical scrapings before treatment and after radiation exposure. An irradiation-induced increase in this indicator was observed in 38% of patients; in other patients, a decrease in this indicator was found after irradiation at a cumulative dose of 10 Gy or its preservation at the initial level. A high inverse correlation was observed between the CSC proportion before treatment with its change after irradiation (R = –0.71; p < 0.0001). The results indicate significant individual differences in the response of cervical CSCs to radiation treatment and substantiate the fundamental possibility of further investigation of the prognostic significance of CSC quantitative changes after the first sessions of radiotherapy with regard to the short- and long-term results of treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Dubrovska, A., Report on the International Workshop “Cancer stem cells: The mechanisms of radioresistance and biomarker discovery”, Int. J. Radiat. Biol., 2014, vol. 90, no. 8, pp. 607–614.

    Article  CAS  PubMed  Google Scholar 

  2. Rycaj, K. and Tang, D.G., Cancer stem cells and radioresistance, Int. J. Radiat. Biol., 2014, vol. 90, no. 8, pp. 615–621.

    Article  CAS  PubMed  Google Scholar 

  3. Pavlopoulou, A., Oktay, Y., Vougas, K., et al., Determinants of resistance to chemotherapy and ionizing radiation in breast cancer stem cells, Cancer Lett., 2016, vol. 380, no. 2, pp. 485–493.

    Article  CAS  PubMed  Google Scholar 

  4. Yang, F., Xu, J., Tang, L., and Guan, X., Breast cancer stem cell: the roles and therapeutic implications, Cell. Mol. Life Sci., 2017, vol. 74, no. 6, pp. 951–966.

    Article  CAS  PubMed  Google Scholar 

  5. Matchuk, O.N. and Saenko, A.S., Irradiation and chemotherapy drug effects on cancer stem cells (SP) of melanoma B16 and breast adenocarcinoma MCF-7, Radiats. Risk, Bull. Nats. Radiats.-Epidemiol. Registra, 2013, vol. 22, no. 2, pp. 67–76.

    Google Scholar 

  6. Matchuk, O.N., Zamulaeva, I.A., Selivanova, E.I., et al., Sensitivity of melanoma B16 side population to low- and high-LET radiation, Radiats. Biol. Radioekol., 2012, vol. 52, no. 3, pp. 261–267.

    CAS  Google Scholar 

  7. Takebe, N., Miele, L., Harris, P.J., et al., Targeting notch, hedgehog, and wnt pathways in cancer stem cells: clinical update, Rev. Clin. Oncol., 2015, vol. 12, no. 8, pp. 445–464.

    Article  CAS  Google Scholar 

  8. Ahmed, M., Chaudhari, K., Babaei-Jadidi, R., et al., Concise review: emerging drugs targeting epithelial cancer stem-like cells, Stem Cells, 2017, vol. 35, no. 4, pp. 839–850.

    Article  PubMed  Google Scholar 

  9. Kuhlmann, J.D., Hein, L., Kurth, I., et al., Targeting cancer stem cells: promises and challenges, Anticancer Agents Med. Chem., 2016, vol. 16, no. 1, pp. 38–58.

    Article  CAS  PubMed  Google Scholar 

  10. Shen, S., Xia, J.X., and Wang, J., Nanomedicine-mediated cancer stem cell therapy, Biomaterials, 2016, vol. 74, pp. 1–18.

    Article  CAS  PubMed  Google Scholar 

  11. Liu, H., Wang, Y.J., Bian, L., et al., CD44+/CD24+ cervical cancer cells resist radiotherapy and exhibit properties of cancer stem cells, Eur. Rev. Med. Pharmacol. Sci., 2016, vol. 20, no. 9, pp. 1745–1754.

    CAS  PubMed  Google Scholar 

  12. Zlokachestvennye novoobrazovaniya v Rossii v 2015 godu (zabolevaemost’ i smertnost’) (Malignant Neoplasms in Russia in 2015 (Morbidity and Mortality)), Kaprin, A.D., Starinskii, V.V., and Petrova, G.V., Eds., Moscow: MNIOI im. P.A. Gertsena, filial FGBU NMIRTs Minzdrava Rossii, 2017.

  13. Krikunova, L.I., Sychenkova, N.I., Shentereva, N.I., and Mkrtchyan, L.S., Radiotherapy in oncogynecology, in Terapevticheskaya radiologiya: rukovodstvo dlya vrachei (Therapeutic Radiology: A Guide for Physicians), Tsyba, A.F. and Mardynskii, Yu.S., Eds., Moscow: Med. Kniga, 2010, pp. 347–383.

  14. Kumazawa, S., Kajiyama, H., Umezu, T., et al., Possible association between stem-like hallmark and radioresistance in human cervical carcinoma cells, J. Obstet. Gynaecol. Res., 2014, vol. 40, no. 5, pp. 1389–1398.

    Article  CAS  PubMed  Google Scholar 

  15. Wang, K., Zeng, J., Luo, L., et al., Identification of a cancer stem cell-like side population in the HeLa human cervical carcinoma cell line, Oncol. Lett., 2013, vol. 6, no. 6, pp. 1673–1680.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Qi, W., Zhao, C., Zhao, L., et al., Sorting and identification of side population cells in the human cervical cancer cell line HeLa, Cancer Cell Int., 2014, vol. 14, no. 1, art. 3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. López, J., Poitevin, A., Mendoza-Martínez, V., et al., Cancer-initiating cells derived from established cervical cell lines exhibit stem-cell markers and increased radioresistance, BMC Cancer, 2012, vol. 12, no. 48, p. 1.

  18. Feng, D., Peng, C., Li, C., et al., Identification and characterization of cancer stem-like cells from primary carcinoma of the cervix uteri, Oncol. Rep., 2009, vol. 22, pp. 1129–1134.

    CAS  PubMed  Google Scholar 

  19. Wu, H., Zhang, J., and Shi, H., Expression of cancer stem markers could be influenced by silencing of p16 gene in HeLa cervical carcinoma cells, Eur. J. Gynaecol. Oncol., 2016, vol. 37, no. 2, pp. 221–225.

    CAS  PubMed  Google Scholar 

  20. Leone, J., Perez, J.E., Dominguez, M.E., et al., Role of difucosylated lewis y antigen in outcome of locally advanced cervical squamous cell carcinoma treated with cisplatin regimen, Int. J. Biol. Markers, 2016, vol. 31, no. 3, pp. 300–308.

    Article  CAS  Google Scholar 

  21. Gu, W., Yeo, E., McMillan, N., and Yu, C., Silencing oncogene expression in cervical cancer stem-like cells inhibits their cell growth and self-renewal ability, Cancer Gene Ther., 2011, vol. 18, pp. 897–905.

    Article  CAS  PubMed  Google Scholar 

  22. Li, J. and Zhou, B.P., Activation of b-catenin and Akt pathways by twist are critical for the maintenance of EMT associated cancer stem cell-like characters, BMC Cancer, 2011, vol. 11, art. 49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Liu, H., Wang, Y.J., Bian, L., et al., CD44+/CD24+ cervical cancer cells resist radiotherapy and exhibit properties of cancer stem cells, Eur. Rev. Med. Pharmacol. Sci., 2016, vol. 20, no. 9, pp. 1745–1754.

    CAS  PubMed  Google Scholar 

  24. Chaffer, C.L., Brueckmann, I., Scheel, C., et al., Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state, Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, no. 19, pp. 7950–7955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Iliopoulos, D., Hirsch, H.A., Wang, G., and Struhl, K., Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion, Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, no. 4, pp. 1397–1402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang, G., Quan, Y., Wang, W., et al., Dynamic equilibrium between cancer stem cells and non-stem cancer cells in human SW620 and MCF-7 cancer cell populations, Brit. J. Cancer, 2012, vol. 106, pp. 1512–1519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Garg, M., Epithelial plasticity and cancer stem cells: major mechanisms of cancer pathogenesis and therapy resistance, World J. Stem Cells, 2017, vol. 9, no. 8, pp. 118–126.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chen, C., Wei, Y., Hummel, M., et al., Evidence for epithelial-mesenchymal transition in cancer stem cells of head and neck squamous cell carcinoma, PLoS One, 2011, vol. 6, no. 1. e16466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Aguilar, E., Marin de Mas, I., Zodda, E., et al., Metabolic reprogramming and dependencies associated with epithelial cancer stem cells independent of the epithelial-mesenchymal transition program, Stem. Cells, 2016, vol. 34, no. 5, pp. 1163–1176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Biddle, A., Liang, X., Gammon, L., et al., Cancer stem cells in squamous cell carcinoma switch between two distinct phenotypes that are preferentially migratory or proliferative, Cancer Res., 2011, vol. 71, no. 15, pp. 5317–5326.

    Article  CAS  PubMed  Google Scholar 

  31. Jiang, Y.G., Luo, Y., He, D.L., et al., Role of Wnt/beta-catenin signaling pathway in epithelial-mesenchymal transition of human prostate cancer induced by hypoxia-inducible factor-1alpha, Int. J. Urol., 2007, vol. 14, no. 11, pp. 1034–1039.

    Article  CAS  PubMed  Google Scholar 

  32. Geng, S., Guo, Y., Wang, Q., et al., Cancer stem-like cells enriched with CD29 and CD44 markers exhibit molecular characteristics with epithelial-mesenchymal transition in squamous cell carcinoma, Arch. Dermatol. Res., 2013, vol. 305, no. 1, pp. 35–47.

    Article  CAS  PubMed  Google Scholar 

  33. Xu, G., Qi, F., Zhang, J., et al., Overexpression of OCT4 contributes to progression of hepatocellular carcinoma, Tumour Biol., 2016, vol. 37, no. 4, pp. 4649–4654.

    Article  CAS  PubMed  Google Scholar 

  34. Human Protein Atlas (Project of The Knut and Alice Wallenberg Foundation, Sweden). www.proteinatlas.org/ENSG00000026025-VIM/cell.

  35. Krause, M., Dubrovska, A., Linge, A., and Baumann, M., Cancer stem cells: radioresistance, prediction of radiotherapy outcome and specific targets for combined treatments, Adv. Drug. Deliv. Rev., 2017, vol. 109, pp. 63–73.

    Article  CAS  PubMed  Google Scholar 

  36. Matchuk, O.N., Zamulaeva, I.A., Kovalev, O.A., and Saenko, A.S., Radioresistance mechanisms of SP cells of murine melanoma B16 culture, Tsitologiya, 2013, vol. 55, no. 8, pp. 553–559.

    CAS  Google Scholar 

  37. Li, F., Zhou, K., Gao, L., et al., Radiation induces the generation of cancer stem cells: a novel mechanism for cancer radioresistance, Oncol. Lett., 2016, vol. 12, no. 5, pp. 3059–3065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gao, X., Sishc, B.J., Nelson, C.B., et al., Radiation-induced reprogramming of pre-senescent mammary epithelial cells enriches putative Putative CD44(+)/CD24(–/low) stem cell phenotype, Front. Oncol., 2016, no. 6, art. 138.

  39. Lee, S.Y., Jeong, E.K., Ju, M.K., et al., Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation, Mol. Cancer, 2017, vol. 16, no. 1, art. 10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Chhabra, R., Cervical cancer stem cells: opportunities and challenges, J. Cancer Res. Clin. Oncol., 2015, vol. 141, no. 11, pp. 1889–1897.

    Article  CAS  PubMed  Google Scholar 

  41. Phillips, T.M., McBride, W.H., and Pajonk, F., The response of CD24–/low/CD44+ breast cancer-initiating cells to radiation, J. Natl. Cancer Inst., 2006, vol. 98, pp. 1777–1785.

    Article  PubMed  Google Scholar 

  42. Lagadec, C., Vlashi, E., Della, DonnaL., et al., Survival and self-renewing capacity of breast cancer initiating cells during fractionated radiation treatment, Breast Cancer Res., 2010, vol. 12, no. 1, art. R13.

  43. Gao, X., McDonald, J.T., Hlatky, L., and Enderling, H., Acute and fractionated irradiation differentially modulate glioma stem cell division kinetics, Cancer Res., 2013, vol. 73, no. 5, pp. 1481–1490.

    Article  CAS  PubMed  Google Scholar 

  44. Kim, M.J., Kim, R.K., Yoon, C.H., et al., Importance of PKCδ signaling in fractionated-radiation-induced expansion of glioma-initiating cells and resistance to cancer treatment, J. Cell Sci., 2011, vol. 124, pp. 3084–3094.

    Article  CAS  PubMed  Google Scholar 

  45. Kim, R.K., Suh, Y., Cui, Y.H., et al., Fractionated radiation-induced nitric oxide promotes expansion of glioma stem-like cells, Cancer Sci., 2013, vol. 104, no. 9, pp. 1172–1177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cojoc, M., Peitzsch, C., Kurth, I., et al., Aldehyde dehydrogenase is regulated by β-catenin/TCF and promotes radioresistance in prostate cancer progenitor cells, Cancer Res., 2015, vol. 75, no. 7, pp. 1482–1494.

    Article  CAS  PubMed  Google Scholar 

  47. Cho, K.J., Park, E.J., Kim, M.S., and Joo, Y.H., Characterization of FaDu-R, a radioresistant head and neck cancer cell line, and cancer stem cells, Auris Nasus Larynx, 2018, vol. 45, no. 3, pp. 566–573.

    Article  PubMed  Google Scholar 

  48. Skvortsov, S., Skvortsova, I.I., Tang, D.G., and Dubrovska, A., Prostate cancer stem cells: current understanding, Stem Cells, 2018, vol. 36, no. 10, pp. 1457–1474.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Batlle, E. and Clevers, H., Cancer stem cells revisited, Nat. Med., 2017, vol. 23, no. 10, pp. 1124–1132.

    Article  CAS  PubMed  Google Scholar 

  50. Zamulaeva, I.A., Matchuk, O.N., Selivanova, E.I., et al., Increase in the number of cancer stem cells after exposure to low-LET radiation, Radiats Biol. Radioecol., 2014, vol. 54, no. 3, pp. 256–264.

    CAS  PubMed  Google Scholar 

  51. Chopra, S., Deodhar, K., Pai, V., et al., Cancer stem cells, CD44 and outcomes following chemoradiation in locally advanced cervical cancer: results from a prospective study, Int. J. Radiat. Oncol. Biol. Phys., 2019, vol. 103, no. 1, pp. 161–168.

    Article  PubMed  Google Scholar 

  52. Javed, S., Sharma, B.K., Sood, S., et al., Significance of CD133 positive cells in four novel HPV-16 positive cervical cancer-derived cell lines and biopsies of invasive cervical cancer, BMC Cancer, 2018, vol. 18, no. 1, p. 357.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

The study of CSCs was supported by the Russian Science Foundation no. 18-75-10025. The diagnostics and treatment of the cervical patients were supported by the Medical Care Insurance Fund and a State Assignment of the Ministry of Health of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Matchuk.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. This study was approved by the Ethics Committee of the Tsyb Medical Radiological Research Center (Obninsk, Russia). Informed consent was obtained from all individual participants involved in the study.

Additional information

Translated by M. Novikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matchuk, O.N., Zamulaeva, I.A., Selivanova, E.I. et al. Effect of Fractionated Low-LET Radiation Exposure on Cervical Cancer Stem Cells under Experimental and Clinical Conditions. Biol Bull Russ Acad Sci 47, 1471–1479 (2020). https://doi.org/10.1134/S1062359020110096

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359020110096

Keywords:

Navigation