Skip to main content
Log in

The Effect of Gamma Radiation on Parthenogenetic Artemia (Branchiopoda, Anostraca) Cysts: Nauplius Hatching and Postnauplial Survival under Varying Salinity

  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract—The effect of gamma radiation doses of 2.5, 5.5, and 7.5 Gy received by Artemia cysts on hatching of nauplii and postnauplial survival of crustaceans has been studied at salinities of 0, 9, 18, 36, 54, 62, 78, and 88 g/L. Under the same salinities, the above parameters are estimated without irradiation. It has been found that the rate of nauplii hatching from cysts depends primarily on the salinity, the coefficient of determination being equal to 90%. The radiation dose does not affect nauplii hatching at any salinity, except 54 g/L, when a significant negative relationship is found between the proportion of hatched nauplii and the radiation dose. The survival of crustaceans appearing from irradiated cysts depends on the salinity. In the salinity range of 9–52 g/L, it is significantly less than in the range of 62–88 g/L (2.5 and 5.5 Gy). The crustaceans emerged from cysts which received 7.5 Gy do not survive to day 12 at the salinity of 88 g/L. The minimum post-nauplial survival of crustaceans is recorded at a salinity of 54 g/L under all irradiation doses; such salinity may be considered critical for Artemia at which the osmoregulation mechanism reconfigures. Ecological effects in Artemia populations can occur starting from a dose of 2.5 Gy. The studied radiation doses may have remote consequences for Artemia populations in hypersaline water bodies. To quantify the effect of these doses on Artemia populations correctly, it is necessary to study not only the generation of crustaceans immediately hatched from irradiated cysts but also 2–3 subsequent generations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Anufriieva, E.V. and Shadrin, N.V., The swimming behavior of Artemia (Anostraca): new experimental and observational data, Zoology, 2014, vol. 117, no. 6, pp. 415–421.

    Article  Google Scholar 

  2. Baid, I.C., The effect of salinity on growth and form of Artemia salina (L), J. Exp. Zool., Part A, 1963, vol. 153, no. 3, pp. 279–283.

    Google Scholar 

  3. Balushkina, E.V., Golubkov, S.M., Golubkov, M.S., Litvinchuk, L.F., and Shadrin, N.V., Effect of abiotic and biotic factors on the structural and functional organization of saline lake ecosystems, Zh. Obshch. Biol., 2009, vol. 70, no. 6, pp. 504–514.

    CAS  PubMed  Google Scholar 

  4. Belmonte, G., Moscatello, S., Batogova, E.A., Pavlovskaya, T., Shadrin, N.V., and Litvinchuk, L.F., Fauna of hypersaline lakes of the Crimea (Ukraine), Thalassia Salentina, 2012, vol. 34, pp. 11–24.

    Google Scholar 

  5. Brumfiel, G., Directly comparing Fukushima to Chernobyl, Nature News Blog, 2011. http://blogs.nature.com/news/2011/09/directly_comparing_fukushima_t.html. Accessed February 8, 2012.

  6. Conte, F.P., Droukas, P.C., and Ewing, R.D., Development of sodium regulation and de novo synthesis of Na+K-activated ATPase in larval brine shrimp, Artemia salina, J. Exp. Zool., Part A, 1977, vol. 202, no. 3, pp. 339–361.

    CAS  Google Scholar 

  7. Dai, L., Chen, D.-F., Liu, Y.-L., Zhao, Y., Yang, F., Yang, J.-S., and Yang, W.-J., Extracellular matrix peptides of Artemia cyst shell participate in protecting encysted embryos from extreme environments, PLoS One, 2011, vol. 6, no. 6, e20187.

    Article  CAS  Google Scholar 

  8. Dallas, L.J., Keith-Roach, M., Lyons, B.P., and Jha, A.N., Assessing the impact of ionizing radiation on aquatic invertebrates: a critical review, Radiat. Res., 2012, vol. 177, pp. 693–716.

    Article  CAS  Google Scholar 

  9. Davenport, J. and Healy, A., Relationship between medium salinity, body density, buoyancy and swimming in Artemia franciscana larvae: Constraints on watercolumn use?, Hydrobiologia, 2006, vol. 556, no. 1, pp. 295–301.

    Article  Google Scholar 

  10. Dhont, J. and Sorgeloos, P., Applications of Artemia, in Artemia: Basic and Applied Biology, vol. 1 of Biology of Aquatic Organisms, Abatzopoulos, T.J., Beardmore, J.A., Clegg, J.S., and Sorgeloos, P., Eds., Dordrecht: Springer, 2002, pp. 251–277.

  11. El-Gamal, M.M., Respiration of Artemia franciscana cultured under different salinities, Anim. Biol., 2011, vol. 61, no. 4, pp. 413–425.

    Article  Google Scholar 

  12. Fuller, N., Lerebours, A., Smith, J.T., and Ford, A.T., The biological effects of ionizing radiation on Crustaceans: a review, Aquat. Toxicol., 2015, vol. 167, pp. 55–67.

    Article  CAS  Google Scholar 

  13. Gaevskaya, N., The variability of Artemia salina, Izv. Imper. Akad. Nauk, Ser. VI, 1914, vol. 8, pp. 1158–1159.

    Google Scholar 

  14. Gajardo, G.M. and Beardmore, J.A., The brine shrimp Artemia: adapted to critical life conditions, Front. Physiol., 2012, vol. 3, p. 185. https://doi.org/10.3389/fphys.2012.00185

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gaubin, Y., Pianezzi, B., and Planel, H., Radiation-induced changes in late effects and in developmental capacities of exposed Artemia cysts, Mech. Ageing Dev., 1985, vol. 32, no. 1, pp. 21–32.

    Article  CAS  Google Scholar 

  16. Gilbin, R., Alonzo, F., and Garnier-Laplace, J., Effects of chronic external gamma irradiation on growth and reproductive success of Daphnia magna, J. Environ. Radioact., 2008, vol. 99, no. 1, pp. 134–145.

    Article  CAS  Google Scholar 

  17. Gulina, L.V. and Gulin, S.B., Natural and man-made radionuclides in ecosystem of the salt Lake Koyashskoe (SE Crimea), Morskoi Ekol. Zh., 2011, vol. 1, no. 10, pp. 19–25.

    Google Scholar 

  18. Jia, Q., Anufriieva, E., Liu, X., Kong, F., and Shadrin, N., Intentional introduction of Artemia sinica (Anostraca) in the high-altitude Tibetan Lake Dangxiong Co: the new population and consequences for the environment and for humans, Chinese J. Oceanol. Limnol., 2015, vol. 33, no. 6, pp. 1451–1460.

    Article  CAS  Google Scholar 

  19. Jorgensen, P.L. and Amat, F., Regulation and function of lysine-substituted Na, K pumps in salt adaptation of Artemia franciscana, J. Membr. Biol., 2008, vol. 221, no. 1, pp. 39–49.

    Article  CAS  Google Scholar 

  20. Khlebovich, V.V. and Aladin, N.V., The salinity factor in animal life, Vestn. Ross. Akad. Nauk, 2010, vol. 80, no. 3, pp. 299–304.

    Google Scholar 

  21. Kulepanov, V.N., Ioniziruyushcheye izlucheniye v gidrosfere. Vvedeniye v radiobiologiyu i radioekologiyu gidrobiontov (Ionizing Radiation in the Hydrosphere. Introduction to the Radiobiology and Radioecology of Hydrobionts), Moscow, INFA-M, 2017.

  22. Kuzin, A.M., The eternal companion of life on Earth—radiation, Vestn. Ross. Akad. Nauk, 1996, vol. 66, no. 4, pp. 330–332.

    CAS  Google Scholar 

  23. MacRae, T.H., Stress tolerance during diapause and quiescence of the brine shrimp, Artemia, Cell Stress Chaperon., 2016, vol. 21, no. 1, pp. 9–18.

    Article  CAS  Google Scholar 

  24. Makrushin, A.V. and Lyanguzova, I.V., Sheath of propagules of invertebrates and plants: selective permeability and barrier properties, Zh. Obshch. Biol., 2006, vol. 67, no. 2, pp. 120–126.

    CAS  PubMed  Google Scholar 

  25. Mirzoyeva, N.Y., 90Sr in the ecosystems of salt lakes of the Crimea, Zh. Sib. Fed. Univ., Ser. Biol., 2016, vol. 4, no. 9, pp. 467–483.

    Google Scholar 

  26. Mirzoyeva, N., Gulina, L., Gulin, S., Plotitsina, O., Stetsuk, A., Arkhipova, S., Korkishko, N., and Eremin, O., Radionuclides and mercury in the salt lakes of the Crimea, Chinese J. Oceanol. Limnol., 2015, vol. 33, no. 6, pp. 1413–1425.

    Article  CAS  Google Scholar 

  27. Muller, P., Neumann, P., and Storm, P., Tafeln der mathematischen Statistik, Munchen: Hanser, 1977; Moscow: Financy i Statistika, 1982.

  28. Novikova, N., Gusev, O., Polikarpov, N., Deshevaya, E., Levinskikh, M., Alekseev, V., Okuda, T., Sugimoto, M., Sychev, V., and Grigoriev, A., Survival of dormant organisms after long-term exposure to the space environment, Acta Astronaut., 2011, vol. 68, no. 9–10, pp. 1574–1580.

    Article  Google Scholar 

  29. Polikarpov, G., Morskaya radiokhimoekologiya i problema zagryazneniy (Marine Radiochemical Ecoecology and the Problem of Pollution), Kiev: Naukova Dumka, 1984.

  30. Polikarpov, G.G., Yegorov, V.N., Gulin, S.B., Stokozov, N.A., Lazorenko, G.Ye., Mirzoyeva, N.Yu., Tereshchenko, N.N., Tsytsugina, V.G., Kulebakina, L.G., Popovichev, V.N., Korotkov, A.A., Yevtushenko, D.B., Zherko, N.V., and Malakhova, L.V., Radioekologicheskiy otklik Chernogo morya na chernobylskuyu avariyu (Radioecological Response of the Black Sea to the Chernobyl Accident), Sevastopol, EKOSI–Gidrofizika, 2008.

    Google Scholar 

  31. Qiu, Z. and MacRae, T.H., ArHsp22, a developmentally regulated small heat shock protein produced in diapause-destined Artemia embryos, is stress inducible in adults, FEBS J., 2008, vol. 275, no. 14, pp. 3556–3566.

    Article  CAS  Google Scholar 

  32. Radchenko, L.A., Influence of temperature on the post-radiation survival of Artemia salina (L.), Gidrobiol. Zh., 1984, vol. 20, no. 1, pp. 61–65.

    Google Scholar 

  33. Rudneva, I.I. Artemiya: Perspektivy ispolzovaniya v narodnom khozyaystve (Artemia: Prospects for Use in the National Economy), Kiev, Naukova Dumka, 1991.

  34. Schmankewitsch, M.W. J., On the relations of Artemia salina and Artemia muhlhausenii, and on the genus Branchipus, J. Nat. History, 1876, vol. 17, no. 99, pp. 256–258.

    Article  Google Scholar 

  35. Shadrin, N.V. and Anufriieva, E.V., Size polymorphism and fluctuating asymmetry of Artemia (Branchiopoda: Anostraca) populations from the Crimea, J. Sib. Fed. Univ., Ser. Biol., 2017, vol. 10, no. 1, pp. 114–126.

    Google Scholar 

  36. Shadrin, N.V., Alternative stable states of lake ecosystems and critical salinities: Is there a rigid connection?, Tr. Zool. Inst. Ross. Akad. Nauk, 2013, vol. 317, suppl. 3, pp. 214–221.

    Google Scholar 

  37. Shadrin, N.V., Anufriieva, E.V., Amat, F., and Eremin, O.Y., Dormant stages of crustaceans as a mechanism of propagation in the extreme and unpredictable environment in the Crimean hypersaline lakes, Chinese J. Oceanol. Limnol., 2015, vol. 33, no. 6, pp. 1362–1367.

    Article  CAS  Google Scholar 

  38. Shadrin, N.V., Anufriieva, E.V., Kipriyanova, L.M., Kolesnikova, E.A., Latushkin, A.A., Romanov, R.E., and Sergeeva, N.G., The political decision caused the drastic ecosystem shift of the Sivash Bay (the Sea of Azov), Quat. Int., 2018, vol. 475, pp. 4–10.

    Article  Google Scholar 

  39. Waters, C.N., Zalasiewicz, J., Summerhayes, C., Barnosky, A.D., Poirier, C., Gałuszka, A., Cearreta, A., Edgeworth, M., Ellis, E.C., Ellis, M., Jeandel C., Leinfelder R., McNeill J.R., Richter D. de B., et al., The Anthropocene is functionally and stratigraphically distinct from the Holocene, Science, 2016, vol. 351, no. 6269, pp. 138–147.

    Article  Google Scholar 

  40. Wu, G., Zhang, H., Sun, J., Liu, F., Ge, X., Chen, W-H., Yu, J., and Wang, W., Diverse LEA (late embryogenesis abundant) and LEA-like genes and their responses to hypersaline stress in postdiapause embryonic development of Artemia franciscana, Comp. Biochem. Physiol., Part B, 2011, vol. 160, no. 1, pp. 32–39.

    CAS  Google Scholar 

  41. Zadereev, E.S., Lopatina, T.S., Zotina, T.A., Oskina, N.A., Dementyev, D.V., and Petrichenkov, M.V., The effect of γ-radiation on resting eggs and life cycle of cladoceran Moina macrocopa, Dokl. Biochem. Biophys., 2016, vol. 466, no. 1, pp. 61–65.

    Article  CAS  Google Scholar 

  42. Zhu, X.J., Feng, C.Z., Dai, Z. M., Zhang, R.C., and Yang, W.J., AMPK alpha subunit gene characterization in Artemia and expression during development and in response to stress, Stress, 2007, vol. 10, no. 1, pp. 53–63.

    Article  CAS  Google Scholar 

Download references

Funding

This study was performed within the framework of a state assignment of the Kovalevsky Institute of Biology of the Southern Seas of RAS on the themes “Molismological and Biogeochemical Bases of Homeostasis in Marine Ecosystems” (project no. AAAA-A18-118020890090-2) and “Functional, Metabolic, and Toxicological Aspects of the Existence of Hydrobionts and Their Populations in Habitats with Different Physical and Chemical Regimes (project no. AAA-A18-118021490093-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Mirzoyeva.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by N. Ruban

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzoyeva, N.Y., Anufriieva, E.V. & Shadrin, N.V. The Effect of Gamma Radiation on Parthenogenetic Artemia (Branchiopoda, Anostraca) Cysts: Nauplius Hatching and Postnauplial Survival under Varying Salinity. Biol Bull Russ Acad Sci 46, 1390–1396 (2019). https://doi.org/10.1134/S1062359019100212

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359019100212

Navigation