Skip to main content
Log in

Vertical Transmission of Baculoviruses

  • ECOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

It is noted that baculoviruses and their insect hosts are convenient objects for studying relationships in the pathogen–host system. It has been established that interest in viruses of this family is associated with their use as molecular vectors for introducing and expressing foreign genes in insects and cell cultures. It has been noted that, in recent decades, using a number of molecular biology methods, a whole series of fundamental data has been obtained on the diagnosis of hidden viruses in insects and evidence of their vertical transmission. Information is provided on the role of vertical transmission in the system of relationships between baculoviruses and their insect hosts at various ecological levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Abul-Nasr, S.E., Ammar, E.D., and Abul-Ela, S.M., Effects of nuclear polyhedrosis virus on various developmental stages of the cotton leafworm Spodoptera littoralis (Boisd), J. Appl. Entomol., 1979, vol. 88, pp. 181–187.

    Google Scholar 

  2. Arif, B., Escasa, S., and Pavlik, L., Biology and genomics of viruses within the genus gammabaculovirus, Viruses, 2011, vol. 3, pp. 2214–2222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aruga, H., Induction of virus infection, in Insect Pathology, an Advanced Treatise, Steinhaus, E.A., Ed., New York: Academic Press, 1963, vol. 1, pp. 499–530.

    Google Scholar 

  4. Bertin, J., Mendrysa, S.M., LaCount, D.J., Gaur, S., Krebs, J.F., Armstrong, R.C., Tomaselli, K.J., and Friesen, P.D., Apoptotic suppression by baculovirus P35 involves cleavage by and inhibition of a virus-induced CED-3/ICE-like protease, J. Virol., 1996, vol. 70, pp. 6251–6259.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bryant, B. and Clem, C.J., Caspase inhibitor P35 is required for the production of robust baculovirus virions in Trichoplusia ni TN-368 cells, J. Gen. Virol., 2009, vol. 90, pp. 654–661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bump, N.J., Hackett, M., Hugunin, M., Seshagiri, S., Brady, K., Chen, P., Ferenz, C., Franklin, S., Ghayur, T., Li, P., Licari, P., Mancovich, J., Shi, L., Greenberg, A.H., Miller, L.K., and Wong, W.W., Inhibition of ice family proteases by baculovirus antiapoptotic protein p35, Science, 1995, vol. 269, pp. 1885–1888.

    Article  CAS  PubMed  Google Scholar 

  7. Burand, J.P., Kim, W., Welch, A., and Elkinton, J.S., Identification of a nucleopolyhedrovirus in winter moth populations from Massachusetts, J. Invertebr. Pathol., 2011, vol. 108, pp. 217–219.

    Article  PubMed  Google Scholar 

  8. Burden, J.P., Griffiths, C.M., Cory, J.S., Smith, P., and Sait, S.M., Vertical transmission of sublethal granulovirus infection in the Indian meal moth, Plodia interpunctella, Mol. Ecol., 2002, vol. 11, pp. 547–555.

    Article  CAS  PubMed  Google Scholar 

  9. Burden, J.P., Nixon, C.P., Hodgkinson, A.E., Rossee, R.D., Sait, S.M., King, L.A., and Hails, R.S., Covert infections as a mechanism for long-term persistence of baculoviruses, Ecol. Lett., 2003, vol. 6, pp. 524–531.

    Article  Google Scholar 

  10. Cabodevilla, O., Murillo, R., Caballero, P., and Williams, T., Occlusion body pathogenicity, virulence and productivity traits vary with transmission strategy in a nucleopolyhedrovirus, Biol. Control., 2011a, vol. 56, pp. 184–192.

    Article  Google Scholar 

  11. Cabodevilla, O., Villar, E., Virto, C., Murillo, R., Williams, T., and Caballero, P., Intra- and intergenerational persistence of an insect nucleopolyhedrovirus: adverse effects of sublethal disease on host development, reproduction, and susceptibility to superinfection, Appl. Environ. Microbiol., 2011b, vol. 77, pp. 2954–2960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cooper, D., Cory, J.S., Theilmann, D.A., and Myers, J.H., Nucleopolyhedroviruses of forest and western tent caterpillars: cross-infectivity and evidence for activation of latent virus in high-density field populations, Ecol. Entomol., 2003, vol. 28, pp. 41–50.

    Article  Google Scholar 

  13. Cory, J.S., Clarke, E.E., Brown, M.L., Hails, R.S., and O’Relly, D.R., Microparasite manipulation of an insect: the influence of the egt gene on the interaction between a baculovirus and its lepidopteran host, Funct. Ecol., 2004, vol. 18, pp. 443–450.

    Article  Google Scholar 

  14. Eastwell, K.C., Cossentine, J.E., and Bernardy, M.G., Characterisation of Cydia pomonella granulovirus from codling moths in a laboratory colony and in orchards of British Columbia, Ann. App. Biol., 1999, vol. 134, pp. 285–291.

    Article  Google Scholar 

  15. Elam, P., Vail, P.V., and Schreiber, F., Infectivity of Autographa californica nuclear polyhedrosis virus extracted with digestive fluids of Heliothis zea, Estigmene acrea, and carbonate solutions, J. Invertebr. Pathol., 1990, vol. 55, pp. 278–283.

    Article  Google Scholar 

  16. Engelhard, E.K. and Volkman, L.E., Developmental resistance in fourth instar trichoplusia ni orally inoculated with Autographa californica M nuclear polyhedrosis virus, Virology, 1995, vol. 209, pp. 384–389.

    Article  CAS  PubMed  Google Scholar 

  17. Evans, H.F., The influence of larval maturation on responses of Mamestra brassicae L. to nuclear polyhedrosis virus infection, Arch. Virol., 1983, vol. 75, pp. 163–170.

    Article  CAS  PubMed  Google Scholar 

  18. Fuxa, J.R. and Richter, A.R., Selection for an increased rate of vertical transmission of Spodoptera frugiperda (Lepidoptera: Noctuidae) nuclear polyhedrosis virus, Environ. Entomol., 1991, vol. 20, pp. 603–609.

    Article  Google Scholar 

  19. Fuxa, J.R., Sun, J.-S., Weidner, E.H., and LaMotte, L.R., Stressors and rearing diseases of Trichoplusia ni: evidence of vertical transmission of NPV and CPV, J. Invertebr. Pathol., 1999, vol. 74, pp. 149–155.

    Article  CAS  PubMed  Google Scholar 

  20. Fuxa, J.R., Richter, A.R., Ameen, A.O., and Hammock, B.D., Vertical transmission of TnSNPV, TnCPV, AcMNPV, and possibly recombinant NPV in Trichoplusia ni, J. Invertebr. Pathol., 2002, vol. 79, pp. 44–50.

    Article  CAS  PubMed  Google Scholar 

  21. Goldberg, A.V., Romanowski, V., Federici, B.A., and Sciocco de Cap, A., Effect of the epap granulovirus on its host, Epinotia aporema (Lepidoptera: Tortricida), J. Invertebr. Pathol., 2002, vol. 80, pp. 148–159.

    Article  PubMed  Google Scholar 

  22. Goulson, D. and Cory, J.S., Sublethal effects of baculovirus in the cabbage moth, Mamestra brassicae, Biol. Control., 1995, vol. 5, pp. 361–367.

    Article  Google Scholar 

  23. Graham, R.I., Tummala, Y., Rhodes, G., Cory, J.S., Shirras, A., Grzywacz, D., and Wilson, K., Development of a real-time qpcr assay for quantification of covert baculovirus infections in a major African crop pest, Insects, 2015, vol. 6, pp. 746–759.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Han, Y., van Houte, S., Drees, G.F., van Oers, M.M., and Ros, V.I.D., Parasitic manipulation of host behaviour: baculovirus SeMNPV EGT facilitates tree-top disease in Spodoptera exigua larvae by extending the time to death, Insects, 2015, vol. 6, pp. 716–731.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Harrison, R.L., Keena, M.A., and Rowley, D.L., Classification, genetic variation and pathogenicity of Lymantria dispar nucleopolyhedrovirus isolates from Asia, Europe, and North America, J. Invertebr. Pathol., 2013, vol. 116, pp. 27–35.

    Article  CAS  PubMed  Google Scholar 

  26. Harrison, R.L., Herniou, E.A., Jehle, J.A., Theilmann, D.A., Burand, J.P., Becnel, J.J., Krell, P.J., van Oers, M.M., Mowery, J.D., Bauchan, G.R., and Ictv Report Consortium, ICTV Virus Taxonomy Profile: Baculoviridae, J. Gen. Virol., 2018, vol. 99, pp. 1185–1186.

    Article  CAS  PubMed  Google Scholar 

  27. Hoover, K., Grove, M.J., and Su, S., Systemic component to intrastadial developmental resistance in Lymantria dispar to its baculovirus, Biol. Control., 2002, vol. 25, pp. 92–98.

    Article  Google Scholar 

  28. Ikeda, M., Yamada, H., Hamajima, R., and Kobayashi, M., Baculovirus genes modulating intracellular innate antiviral immunity of lepidopteran insect cells, Virology, 2013, vol. 435, pp. 1–13.

    Article  CAS  PubMed  Google Scholar 

  29. Ilyinykh, A.V. and Polenogova, O.V., Demonstration of remote effect of vertical transmission of baculovirus using the gypsy moth Lymantria dispar L. (Lepidoptera, Lymantriidae) as an example, Zh. Obshch. Biol., 2012, no. 5, pp. 389–395.

  30. Ilyinykh, A.V. and Ul’yanova, E.G., Latency of baculoviruses, Biol. Bull. (Moscow), 2005, vol. 32, no. 5, pp. 496–502.

    Article  Google Scholar 

  31. Ilyinykh, A.V., Shternshis, M.V., and Kuzminov, S.V., Exploration into a mechanism of transgenerational transmission of nucleopolyhedrovirus in Lymantria dispar L. in Western Siberia, BioControl, 2004, vol. 49, pp. 441–454.

    Article  Google Scholar 

  32. Karpov, A.E., Latency of baculoviruses and its practical significance, Mol. Biol., 1979, vol. 22, pp. 74–83.

    Google Scholar 

  33. Khurad, A.M., Mahulikar, A., Rathod, M.K., Rai, M.M., Kanginakudru, S., and Nagaraju, J., Vertical transmission of nucleopolyhedrovirus in the silkworm, Bombyx mori L., J. Invertebr. Pathol., 2004, vol. 87, pp. 8–15.

    Article  CAS  PubMed  Google Scholar 

  34. Kouassi, L.N., Tsudo, K., Goto, C., Mukarava, S., Sakamaki, S., Kusigemati, K., and Nakamura, M., Prevalence of latent virus in Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) and its activation by heterologous virus, Appl. Entomol. Zool., 2009, vol. 44, pp. 95–102.

    Article  CAS  Google Scholar 

  35. Kukan, B., Vertical transmission of nucleopolyhedrovirus in insects, J. Invertebr. Pathol., 1999, vol. 74, pp. 103–111.

    Article  CAS  PubMed  Google Scholar 

  36. Lee, J.-C., Chen, H.-H., and Chao, Y.-C., Persistent baculovirus infection results from deletion of the apoptotic suppressor gene p35, J. Virol., 1998, vol. 72, pp. 9157–9165.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lin, C.-L., Lee, J.-C., Chen, H.-H., Wood, H.A., Li, M.-L., Li, C.-F., and Chao, Y.-C., Persistent Hz-1 virus infection in insect cells: evidence for insertion of viral DNA into host chromosomes and viral infection in a latent status, J. Virol., 1999, vol. 73, pp. 128–139.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lindroth, R.L., Barmann, M.A., and Weisbrod, A.V., Nutrient deficiencies and the gypsy moth, Lymantria dispar: effect on banal performance and detoxication enzyme activities, J. Insect Physiol., 1991, vol. 37, pp. 45–52.

    Article  CAS  Google Scholar 

  39. Liu, Z., Yang, F., Qi, Y., Zhu, Y., and Zhu, F., Vertical transmission of baculovirus and expression of baculovirus-mediated green fluorescent protein gene in successive generations of Helicoverpa armigera, Acta Entomol. Sinica, 2001, vol. 44, pp. 1–8.

    CAS  Google Scholar 

  40. Luhl, R., Versuche mit insectenpatigenene poliederviren und chemischen stressoren zur bekamfung forstschadlicher raupeu, Z. Angew. Entomol., 1974, vol. 76, pp. 49–53.

    Article  Google Scholar 

  41. Manji, G.A., Hozar, R.R., LaCount, D.J., and Frisen, P.D., Baculovirus inhibitor of apoptosis functions at or upstream of the apoptotic suppressor P35 to prevent programmed cell death, J. Virol., 1997, vol. 71, pp. 4509–4516.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Matthews, H.J., Smith, I., and Edwards, J.P., Lethal and sublethal effects of a granulovirus on the tomato moth Lacanobia oleracea, J. Invertebr. Pathol., 2001, vol. 80, pp. 73–80.

    Article  Google Scholar 

  43. Milks, M.L. and Myers, J.M., The development of larval resistance to a nucleopolyhedrovirus is not accompanied by an increased virulence in the virus, Evol. Ecol., 2001, vol. 14, pp. 645–664.

    Article  Google Scholar 

  44. Milks, M.L., Burnstyn, I., and Myers, J.M., Influence of larval age on the lethal and sublethal effects of nucleopolyhedrovirus of Trichoplusia ni in the cabbage looper, Biol. Control, 1998, vol. 12, pp. 119–126.

    Article  Google Scholar 

  45. Milks, M.L., Myers, J.M., and Leptich, M.K., Costs and stability of cabbage looper resistance to a nucleopolyhedrovirus, Evol. Ecol., 2002, vol. 16, pp. 369–385.

    Article  Google Scholar 

  46. Murillo, R., Hussey, M.S., and Possee, R.D., Evidence for covert baculovirus infections in a Spodoptera exigua laboratory culture, J. Gen. Virol., 2011, vol. 92, pp. 1061–1070.

    Article  CAS  PubMed  Google Scholar 

  47. Murray, K.D. and Elkinkton, J.S., Environmental contamination of egg masses as a major component of transgeneration transmission of gypsy moth nuclear polyhedrosis virus (LdMNPV), J. Invertebr. Pathol., 1989, vol. 53, pp. 324–334.

    Article  Google Scholar 

  48. Murray, K.D., Shieds, K.S., Burand, J.P., and Elkinton, J.S., The effect of gypsy moth metamorphosis on the development of nuclear polyhedrosis virus infection, J. Invertebr. Pathol., 1991, vol. 57, pp. 352–361.

    Article  Google Scholar 

  49. Myers, J., Malakar, H.R., and Cory, J.S., Syblethal nucleopolyhedrovirus infection effects on female pupal weight, egg mass size, and vertical transmission in gypsy moth (Lepidoptera: Lymantriidae), Environ. Entomol., 2000, vol. 29, pp. 1268–1272.

    Article  Google Scholar 

  50. Myers, J.H. and Cory, J.S., Ecology and evolution of pathogens in natural populations of Lepidoptera, Evol. Appl., 2016, vol. 9, pp. 231–247.

    Article  PubMed  Google Scholar 

  51. Neeglund, Y.F. and Mathad, S.B., Transmission of nuclear polyhedrosis virus in laboratory population of the armyworm, Mythimna (Pseudoletia) separata, J. Invertebr. Pathol., 1978, vol. 31, pp. 143–147.

    Article  Google Scholar 

  52. Oberemok, V.V., Demonstration of transovarial transmission of nucleopolyhedrovirus of the gypsy moth Lymantria dispar (family Baculoviridae) by RAPD-PCR, Zh. Obshch. Biol., 2008, no. 5, pp. 397–399.

  53. Park, E.J., Yin, C.-M., and Burand, J.P., Baculovirus replication alters hormone-regulated host development, J. Gen. Virol., 1996, vol. 77, pp. 547–554.

    Article  CAS  PubMed  Google Scholar 

  54. Passarelli, A.L., Barriers to success: how baculoviruses establish efficient systemic infections, Virology, 2011, vol. 411, pp. 383–392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Patil, U.R., Savanurmath, C.J., Mathad, S.B., Aralaguppi, P.I., and Ingalhalli, S.S., Effects of polyhedrosis virus on the growth, development and reproduction in surviving generations of the armyworm Mythimna (Peudoletia) separate (Walker), J. Appl. Entomol., 1989, vol. 108, pp. 527–532.

    Article  Google Scholar 

  56. Popham, H.J.R., Bischoff, D.S., and Slavicek, J.M., Both Lymantria dispar nucleopolyhedrovirus Enhancin genes contribute to viral potency, J. Virol., 2001, vol. 75, pp. 8639–8648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. O’Reilly, D.R. and Miller, L.K., A baculovirus blocks insect molting by producing ecdysteroid UDP-glucosyltransferase, Science, 1989, vol. 245, pp. 1110–1112.

    Article  PubMed  Google Scholar 

  58. Roelvink, P.W., Corsaro, B.G., and Granados, R.R., Characterization of the Helicoverpa armigera and Pseudaletia unipuncta granulovirus enhancin genes, J. Gen. Virol., 1995, vol. 76, pp. 2693–2705.

    Article  CAS  PubMed  Google Scholar 

  59. Rohrmann, G.R., Baculovirus Molecular Biology, Bethesda (MD): Nat. Center Biotechnol. Inform. (US), 2013, 3rd ed.

    Google Scholar 

  60. Sait, S.M., Begon, M., and Thompson, D.J., The influence of a sublethal baculovirus infection in the Indian meal moth, Plodia interpunctella, J. Anim. Ecol., 1994a, vol. 63, pp. 541–550.

    Article  Google Scholar 

  61. Sait, S.M., Begon, M., and Thompson, D.J., Long-term population dynamics of the Indian meal moth Plodia interpunctella and its granulosis virus, J. Anim. Ecol., 1994b, vol. 63, pp. 861–870.

    Article  Google Scholar 

  62. Sait, S.M., Gage, M.J.G., and Cook, P.A., Effect of a fertility-reducing baculovirus on sperm numbers and sizes in the Indian meal moth, Plodia interpunctella, Funct. Ecol., 1998, vol. 12, pp. 56–62.

    Article  Google Scholar 

  63. Shapiro, M. and Robertson, J.L., Yield and activity of gypsy moth (Lepidoptera: Lymantriidae) nucleopolyhedrosis virus recovered from survivors of viral challenge, J. Econ. Entomol., 1987, vol. 80, pp. 901–905.

    Article  Google Scholar 

  64. Shikata, M., Shibata, H., Sakurai, M., Sano, Y., Hashimoto, Y., and Matsumoto, T., The ecdysteroid UDP-glucosyltransferase gene of Autographa californica nucleopolyhedrovirus alters the molting and metamorphosis of a non-target insect, the silkworm, Bombyx mori (Lepidoptera, Bombycidae), J. Gen. Virol., 1998, vol. 76, pp. 1547–1551.

    Article  Google Scholar 

  65. Slavicek, J.M., Popham, H.J.R., and Riegel, C.I., Deletion of the Lymantria dispar multicapsid nucleopolyhedrovirus ecdysteroid UDP-glucosyltransferase gene enhances viral killing speed in the last instar of the gypsy moth, Biol. Control, 1999, vol. 16, pp. 91–103.

    Article  Google Scholar 

  66. Smith, P.H. and Vlak, J.M., Biological activity of Spodoptera exigua nuclear polyhedrosis virus against S. exigua larvae, J. Invertebr. Pathol., 1988, vol. 51, pp. 107–114.

    Article  Google Scholar 

  67. Vail, P.V. and Hall, I.M., Susceptibility of the pupa of the cabbage looper, Trichoplusia ni, to nucleopolyhedrosis virus, J. Invertebr. Pathol., 1969, vol. 14, pp. 227–236.

    Article  Google Scholar 

  68. Vilaplana, L., Wilson, K., Redman, E.M., and Cory, J.S., Pathogen persistence in migratory insects: high levels of vertically-transmitted virus infection in field populations of the African armyworm, Evol. Ecol., 2010, vol. 24, pp. 147–160.

    Article  Google Scholar 

  69. Virto, C., Zarate, C.A., Lopez-Ferber, M., Murillo, R., Caballero, P., and Williams, T., Gender-mediated differences in vertical transmission of a nucleopolyhedrovirus, PLoS One, 2013, vol. 8. e70932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Virto, C., Navarro, D., Tellez, M.M., Herrero, S., Williams, T., Murillo, R., and Caballero, P., Natural populations of Spodoptera exigua are infected by multiple viruses that are transmitted to their offspring, J. Invertebr. Pathol., 2014, vol. 122, pp. 22–27.

    Article  PubMed  Google Scholar 

  71. Wang, P. and Granados, R.R., An intestinal mucin is the target for a baculovirus enhancin, Proc. Natl. Acad. Sci. U. S. A., 1997, vol. 94, pp. 6977–6982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang, P. and Granados, R.R., Observations on the presence of the peritrophic membrane in larval Trichoplusia ni and its role in limiting baculovirus infection, J. Invertebr. Pathol., 1998, vol. 72, pp. 57–62.

    Article  CAS  PubMed  Google Scholar 

  73. Wang, P., Hammer, P.A., and Granados, R.R., Interaction of Trichoplusia ni granulesis virus-encoded enhancin with the midgut epithelium and peritrophic membrane of four lepidopteran insects, J. Gen. Virol., 1994, vol. 66, pp. 541–550.

    Article  Google Scholar 

  74. Washburn, J.O., Kirkpatrick, B.E., and Volkman, L.E., Insect protection against viruses, Nature, 1996, vol. 383, p. 767.

    Article  CAS  Google Scholar 

  75. Wood, H.A., Smith, I.R.L., and Crook, N.E., Do latent baculoviruses exist and what is their importance?, in Proc. 18th Int. Congr. Entomol., Abstract Vol., Vancouver: Entomol. Soc. America, 1988, p. 251.

  76. Yamao, M., Katayama, N., Nakazawa, H., Yamakawa, M., Hayashi, Y., Hara, S., Kamei, K., and Mori, H., Gene targeting in the silkworm by use of a baculovirus, Genes Dev., 1999, vol. 13, pp. 511–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Young, S.Y., Effect of nuclear polyhedrosis virus in Spodoptera ornitogalli larvae on post larval stages and dissemination of adults, J. Invertebr. Pathol., 1990, vol. 55, pp. 69–75.

    Article  Google Scholar 

  78. Young, S.Y. and Yearian, W.C., Nuclear polyhedrosis virus infection of Pseudoplusia includens (Lep.: Noctuidae) larvae: effect on post larval stages and transmission, Entomophaga, 1982, vol. 27, pp. 61–66.

    Article  Google Scholar 

  79. Zhang, P., Yang, K., Dai, X., Pang, Y., and Su, D., Infection of wild-type Autographa californica multicapsid nucleopolyhedrovirus induces in vivo apoptosis of Spodoptera litura larvae, J. Gen. Virol., 2002, vol. 83, pp. 3003–3011.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ilyinykh.

Additional information

Translated by A. Ostyak

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilyinykh, A.V. Vertical Transmission of Baculoviruses. Biol Bull Russ Acad Sci 46, 302–310 (2019). https://doi.org/10.1134/S1062359019030038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359019030038

Navigation