Skip to main content
Log in

Group Selection

  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Variations in local population densities are common in many fish, amphibian, bird, and smaller mammal species. Aggregations attract predators, the main factor of nonselective elimination in schooling fish shoals, smaller bird flocks, and aggregations of disseminating underyearling anuran amphibians and smaller rodents. Very high degrees of similarity of the external phenotypic traits are characteristic of monospecific fish shoals and smaller bird flocks. Aggregations are adaptive, because they facilitate locomotion and the location of abundant food sources irregularly distributed in space. The “multiple eyes” effect allows a timely detection of danger. Phenotypic monomorphism, including behavioral, hampers the predator’s choice of prey, often rendering an attack unsuccessful. A group attack of predators disorganizes the defensive maneuvering of the aggregation and ensures hunting success. The “dilution effect” plays crucial roles in these conditions. The more numerous the aggregation, the higher the probability of survival of any individual member. The dilution effect is inherent in any aggregation irrespective of the degree of monomorphism of its constituent organisms, on the assumption of their equal availability to predators. This peculiarity is characteristic of many bird colonies, dispersing young smaller rodents, underyearling anurans leaving their native pond, etc. Aggregations are adaptations to two very important factors: food supply and defense. The more numerous the aggregation, the higher its adaptive value. Inside an aggregation, the fitness of all of its members is the same, but the more numerous the aggregation and the greater the dilution, the higher the chances for the survival of any individual. The larger aggregations are more fit than the less numerous ones. The reproductive success and thus the contributions to abundance of the next generation are higher in larger aggregations. That is what group selection is, groups rather than the constituent organisms being selected for.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. André, J. and Morin, O., Questioning the cultural evolution of altruism, J. Evol. Biol., 2011, vol. 24, pp. 2531–2542.

    Article  PubMed  Google Scholar 

  2. Arnold, S.J. and Wassersug, P.J., Differential predation on metamorphic anurans by garter snakes (Thamnophis): social behaviour as a possible defense, Ecology, 1978, vol. 59, no. 5, pp. 1014–1022.

    Article  Google Scholar 

  3. Arroyo, B., Mougeot, F., and Bretagnolle, V., Colonial breeding and nest defense in Montagu’s harrier (Circus pigargus), Behav. Ecol. Sociobiol., 2001, vol. 50, pp. 109–115.

    Article  Google Scholar 

  4. Blinov, V.N., Vranovye Zapadnosibirskoi ravniny (Corvidae of the West Siberian Plain), Moscow: Tovar. Nauch. Izd. KMK, 1998.

    Google Scholar 

  5. Blumstein, D.T. and Daniel, J.C., Red kangaroos (Macropus rufus) receive an antipredator benefit from aggregation, Acta Ethol., 2003, vol. 5, pp. 351–360.

    Article  Google Scholar 

  6. Burton, D., “Optimal” colony size for least terns: an inter-colony study of opposing selective pressures by predators, Condor, 1999, vol. 101, pp. 607–615.

    Article  Google Scholar 

  7. Cassini, M.H. and Galante, M.L., Foraging under predation risk in the wild guinea pig, the effect of vegetation height on habitat utilization, Ann. Zool. Fenn., 1992, vol. 29, pp. 285–290.

    Google Scholar 

  8. Cassini, M.H., Foraging under predation risk in the wild guinea pig Cavia aperea, Oikos, 1991, vol. 62, pp. 20–24.

    Article  Google Scholar 

  9. Chernyavskii, F.B. and Tkachev, A.V., Populyatsionnye tsikly lemmingov v Arktike. Ekologicheskie i endokrinnye aspekty (Population Cycles of Lemmings in the Arctic: Environmental and Endocrine Aspects), Moscow: Nauka, 1982.

    Google Scholar 

  10. Clutton-Brock, T., Breeding together: kin selection and mutualism in cooperative vertebrates, Science, 2002, vol. 206, no. 5565, pp. 68–72.

    Google Scholar 

  11. Clutton-Brock, T. and Thorton, A., Social learning and development of individual and group behaviour in mammal societies, Philos. Trans. R. Soc. London, 2011, vol. 366, no. 1567, pp. 978–987.

    Article  Google Scholar 

  12. Colwell, R.K., Group selection is implicated in the evolution of female-biased sex ratios, Nature, 1981, vol. 290, pp. 401–404.

    Article  Google Scholar 

  13. Creel, S. and Creel, N.M., Communal hunting and pack size in African wild dogs, Lucaon pictus, Anim. Behav., 1995, vol. 50, pp. 1325–1339.

    Article  Google Scholar 

  14. Creel, S. and Winnie, J.A., Responses of elk herd size to fine-scale spatial and temporal variation in risk of predation by wolves, Anim. Behav., 2005, vol. 69, pp. 1181–1189.

    Article  Google Scholar 

  15. Creel, S., Schuette, P., and Cristianson, D., Effects of predation risk on group size, vigilance and foraging behavior in African ungulate community, Behav. Ecol., 2014, pp. 1–12.

  16. Dawkins, R., Twelve misunderstandings of kin selection, Ecology, 1979, vol. 51, no. 2, pp. 184–206.

    Google Scholar 

  17. Degtyarev, V.G., Vodno-bolotnye ptitsy v usloviyakh krio-aridnoi ravniny (Wetland Birds in a Cryo-Arid Plain), Novosibirsk: Nauka, 2007.

    Google Scholar 

  18. Dorzhiev, Ts.Z., Ekologiya simpatricheskikh populyatsii golubei (Ecology of Sympatric Populations of Pigeons), Moscow: Nauka, 1991.

    Google Scholar 

  19. Fletcher, J.A. and Doebeli, M., A simple and general explanation for the evolution of altruism, Proc. R. Soc. Lond., 2009, vol. 276, no. 1654, pp. 13–20.

    Article  Google Scholar 

  20. Focardi, S. and Pecchioli, A., Social cohesion and foraging decrease with group size in follow deer (Dama dama), Behav. Ecol. Sociobiol., 2005, vol. 59, pp. 84–91.

    Article  Google Scholar 

  21. Foctin, D., Fortin, M.-E., Beyer, H.L., Duchesne, T., Courant, S., and Dancose, K., Group size mediated habitat selection and group fusion-fission dynamics of bison under predation risk, Ecology, 2009, vol. 90, no. 9, pp. 2480–2490.

    Article  Google Scholar 

  22. Forster, I.P. and Phillips, R.A., Influence of nest location, density and topography on breeding success in the black-browed albatross Talassarche melanophris, Mar. Ornithol., 2009, vol. 37, pp. 213–217.

    Google Scholar 

  23. Foster, K.R., Wenseleer, T., and Ratnicks, L.W., Kin selection is the key to altruism, Trends Ecol. Evol., 2006, vol. 21, pp. 57–60.

    Article  PubMed  Google Scholar 

  24. Fryxell, J.M., Forage quality and aggregation by large herbivores, Am. Nat., 1991, vol. 38, no. 2, pp. 478–498.

    Article  Google Scholar 

  25. Gaddis, P., Mixed flocks, accipiters and antipredator behavior, Condor, 1980, vol. 82, pp. 348–349.

    Article  Google Scholar 

  26. Galushin, V.M., Rol’ khishchnykh ptits v ekosistemakh (The Role of Birds of Prey in Ecosystems), Itogi Nauki Tekhn., Ser. Zool., 1982, vol. 11, pp. 158–238.

    Google Scholar 

  27. Gilevich, A.L., Breeding the black-headed gull in the Selenga River delta on Lake Baikal, in Ekologiya ptits Vostochnoi Sibiri (Ecology of Birds of Eastern Siberia), Irkutsk, 1977, pp. 37–58.

  28. Goodale, E. and Beauchamp, G., The relationship between leadership and gregariousness in mixed-species bird flocks, J. Avian Biol., 2010, vol. 41, no. 11, pp. 99–103.

    Article  Google Scholar 

  29. Goodale, E. and Kotagama, S.W., Response to conspecific and heterospecific alarm calls in mixed species bird flocks of a Sri Lankan rain forest, Behav. Ecol. Sociobiol., 2008, vol. 19, no. 4, pp. 887–894.

    Article  Google Scholar 

  30. Greig-Smith, R.W., The formation structure and function of mixed insectivorous bird flocks in West African savanna woodland, Ibis, 1978, vol. 120, no. 3, pp. 284–297.

    Article  Google Scholar 

  31. Hamilton, W.D., The evolution of altruistic behavior, Am. Nat., 1963, vol. 97, no. 896, pp. 354–356.

    Article  Google Scholar 

  32. Hamilton, W.D., The genetical evolution of social behavior (I, II), J. Theor. Biol., 1964, vol. 7, pp. 17–52.

    Article  CAS  PubMed  Google Scholar 

  33. Hoare, D.J., Ruxton, G.D., Godin, J.G., and Krause, J., The social organization of free-ranging fish shoals, Oikos, 2000, vol. 89, no. 3, pp. 546–554.

    Article  Google Scholar 

  34. Ivanitskii, V.V., Vorob’i i rodstvennye im gruppy zernoyadnykh ptits (Sparrows and Related Groups of Granivorous Birds), Moscow: Tovar. Nauch. Izd. KMK, 1997.

    Google Scholar 

  35. Kephart, D.S. and Arnold, S.J., Garter snakes diets in a fluctuating environment, a seven-years study, Ecology, 1982, vol. 63, no. 5b, pp. 1232–1236.

    Article  Google Scholar 

  36. Krause, J., Positioning behavior in fish shoals: a cost–benefit analysis, J. Fish. Biol., 2005, vol. 43, pp. 309–314.

    Article  Google Scholar 

  37. Krause, J. and Ruxton, G.D., Living in Groups, Oxford: Oxford Univ. Press, 2002.

    Google Scholar 

  38. Krause, J., Hoare, D.J., Krause, S., Hemelrijk, C.K., and Rubensteib, D.I., Leadership in fish shoals, Fish Fishery, 2000, vol. 43, pp. 82–89.

    Article  Google Scholar 

  39. Krebs, C.J. and Myers, J.H., Population cycles in small mammals, Adv. Ecol. Res., 1974, vol. 8, pp. 267–399.

    Article  Google Scholar 

  40. Lehman, L., Keller, L., West, S., and Roze, D., Group selection and kin selection. Two concepts, but one process, Proc. Natl. Acad. Sci. U. S. A., 2007, vol. 104, no. 6, pp. 6736–6739.

    Article  Google Scholar 

  41. Leigh, EG., When does the good of the group override the advantage of the individual?, Proc. Natl. Acad. Sci. U. S. A., 1983, vol. 80, pp. 2985–2989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lima, S.L. and Dill, L.M., Behavioral decisions made under the risk of predation: a review and prospectus, Can. J. Zool., 1990, vol. 68, no. 4, pp. 619–640.

    Article  Google Scholar 

  43. Lobkov, V.A., Speckled ground squirrel in the northwestern part of the Black Sea region, in Biologiya, funktsionirovanie populyatsii (Biology and Functioning of Populations), Odessa: Astro Print, 1999.

    Google Scholar 

  44. MacDonald, D.W. and Henderson, D.G., Aspects of the behavior and ecology of mixed-species bird flocks in Kashmir, Ibis, 1977, vol. 119, no. 4, pp. 481–493.

    Article  Google Scholar 

  45. Magurran, A.E. and Higham, A., Information transfer across fish shoals under predator threat, Ecology, 1988, vol. 78, no. 2, pp. 153–158.

    Google Scholar 

  46. Major, P.F. and Dill, L.M., The three-dimensional structure of airborne bird flocks, Behav. Ecol. Sociobiol., 1978, vol. 4, pp. 111–122.

    Article  Google Scholar 

  47. Martin, T.E., Processes organizing open-nesting bird assemblages: competition or nest predation?, Evol. Ecol., 1988, vol. 2, pp. 37–50.

    Article  Google Scholar 

  48. Maynard-Smith, J., Group selection and kin selection, Nature, 1964, vol. 201, p. 11.

    Article  Google Scholar 

  49. Maynard-Smith, J., Group selection, Q. Rev. Biol., 1976, vol. 51, pp. 277–283.

    Article  Google Scholar 

  50. Mikheev, V.N., Neodnorodnost’ sredy i troficheskie otnosheniya u ryb (The Heterogeneity of the Environment and Trophic Relationships in Fish), Moscow: Nauka, 2006.

    Google Scholar 

  51. Morse, D.H., Feeding behavior and predator avoidance in heterospecific groups, BioScience, 1977, vol. 27, no. 5, pp. 322–339.

    Google Scholar 

  52. Okasha, S., Multilevel selection and the partitioning of covariance: a comparison of three approaches, Evolution, 2004, vol. 59, pp. 84–91.

    Google Scholar 

  53. Pavlov, D.S. and Kasumyan, A.O., Stainoe povedenie ryb (Schooling Behavior of Fish), Moscow: Mosk. Gos. Univ., 2003.

    Google Scholar 

  54. Pays, O., Benhamou, S., Helder, R., and Gerard, J.-F., The dynamics of group size in follow deer (Dama dama), Behav. Ecol. Sociobiol., 2007, vol. 59, pp. 82–93.

    Google Scholar 

  55. Pitcher, T.J. and Parrish, J.K., Function of shoaling behavior in Teleostes, in Behaviour of Teltost Fishes, 2nd ed., Chapman and Hall, 1993, pp. 365–439.

    Book  Google Scholar 

  56. Pitcher, T.J., Magurran, A.E., and Winfield, I.J., Fish in larger shoals find food faster, Behav. Ecol. Sociobiol., 1982, vol. 10, pp. 149–151.

    Article  Google Scholar 

  57. Protasov, V.R., Povedenie ryb (Fish Behavior), Moscow: Pishchevaya promyshlennost’, 1978.

  58. Radakov, D.V., Stainost’ ryb kak ekologicheskoe yavlenie (Fish Schooling as an Ecological Phenomenon), Moscow: Nauka, 1976.

    Google Scholar 

  59. Reeve, H.K. and Keller, L., Levels of selection: burying the units-of-selection, the crucial new issues, in Levels of Selection in Evolution, Princeton: Princeton Univ. Press, 1999, pp. 3–14.

    Google Scholar 

  60. Sand, H., Wikenros, C., Wabakken, P., and Liberg, O., Effects of hunting group size, snow depth and age on the success of wolves hunting moose, Anim. Behav., 2006, vol. 72, pp. 781–789.

    Article  Google Scholar 

  61. Serrano, D., Oro, D., Ursua, E., and Tella, J.M., Colony size selection determines adult survival and dispersal preferences: alee effect in colonial birds, Am. Nat., 2005, vol. 166, no. 2, pp. E 22–E 31.

  62. Severtsov, A.S., Evolyutsionnyi stazis i mikroevolyutsiya (Evolutionary Stasis and Microevolution), Moscow: Tovar. Nauch. Izd. KMK, 2008.

    Google Scholar 

  63. Severtsov, A.S. and Shubkina, A.V., Predator–prey interaction between individuals. 1. The role of predator in natural selection, Biol. Bull., 2015, vol. 42, no. 7, pp. 633–642.

    Article  Google Scholar 

  64. Severtsov, A.S. and Shubkina, A.V., Predator–prey interaction between individuals. 2. Mechanisms of selection, Biol. Bull., 2015a, vol. 42, no. 7, pp. 643–651.

    Article  Google Scholar 

  65. Shilov, I.A., Ekologo-fiziologicheskie osnovy populyatsionnykh otnoshenii u zhivotnykh (Ecological and Physiological Bases of Population Relations in Animals), Moscow: Mosk. Univ., 1977.

    Google Scholar 

  66. Shvarts, S.S., Ekologicheskie zakonomernosti evolyutsii (Ecological Principles of Evolution), Moscow: Nauka, 1980.

    Google Scholar 

  67. Sokolov, V.E., Severtsov, A.S., and Shubkina, A.V., Modeling the selective effect of a predator on the prey: the use of sighthounds to catch saigas, Zool. Zh., 1990, vol. 69, no. 10, pp. 117–125.

    Google Scholar 

  68. Soldatova, A.Ya., Some features of periodic phenomena of life of the small ground squirrel in the Southern Trans-Volga region, in Materialy po biogeografii SSSR (Materials on the Biogeography of the USSR), Moscow: Akad. Nauk SSSR, 1955, vol. 66, no. 2, pp. 103–109.

  69. Sridhar, H., Beauchamp, G., and Shanker, H., Why do birds participate in mixed-species foraging flocks? A large-scale synthesis, Anim. Behav., 2009, vol. 78, pp. 337–347.

    Article  Google Scholar 

  70. Stinson, C.H., Flocking and predator avoidance: models of flocking and observations on the spatial dispersion of foraging winter shorebirds (Charadrii), Oikos, 1980, vol. 34, no. 1, pp. 35–43.

    Article  Google Scholar 

  71. Sundell, J., Dudek, D., Klemme, I., Kovisto, E., and Pusenius, J., Variation in predation risk and vole feeding behavior: a field test of the risk allocation hypothesis, Oecologia, 2004, vol. 139, pp. 1–7.

    Article  Google Scholar 

  72. Svenson, J.E., Andreev, A.V., and Drovetskij, S.V., Factors shaping winter social organization in hazel Bonasia bonasia: a comparative study in the eastern and western Palearctic, J. Avian Biol., 1995, vol. 26, no. 1, pp. 4–12.

    Article  Google Scholar 

  73. Syroechkovsky, E.V., Laying eggs in foreign nests and the family structure in geese of the genus Anser, Kazarka, 2004, no. 10, pp. 81–105.

  74. Syroechkovskii, E.V., Puti adaptatsii guseobraznykh triby Anserini k obitaniyu v Arktike (Pathways of Adaptation of Anseriformes of the Tribe Anserini to Life in the Arctic), Moscow: Tovar. Nauch. Izd. KMK, 2013.

    Google Scholar 

  75. Thaker, M., Vanak, A.T., Oven, C.R., Ogden, M.B., and Slotow, R., Group dynamics of zebra and wildebeest in a woodland savanna: effects of predation risk and habitat density, PLoS One, 2010. doi 10.1371/journal.pone.0012758

  76. Trivers, R.L., The evolution of reciprocal altruism, Q. Rev. Biol., 1971, vol. 46, pp. 35–37.

    Article  Google Scholar 

  77. Van Valen, L., Group selection and the evolution of dispersal, Evolution, 1971, vol. 25, no. 4, pp. 591–598.

    Article  PubMed  Google Scholar 

  78. De Vito, J., Metamorphism synchrony and aggregation as antipredator responses in American toads, Oikos, 2003, vol. 103, no. 1, pp. 75–80.

    Article  Google Scholar 

  79. Vodyanaya polevka (Bank Vole), Panteleev, P.A., Ed., Moscow: Nauka, 2001.

    Google Scholar 

  80. Waibel, M., Floreano, D., and Keller, L., A quantitative test of Hamilton’s rule for the evolution of altruism, PLoS Biol., 2011, vol. 9, no. 5, pp. 1–7.

    Article  CAS  Google Scholar 

  81. de Ward, H. and Verbrugge, R., Evolution of altruistic punishment in heterogeneous populations, J. Theor. Biol., 2011, vol. 290, pp. 88–103.

    Article  Google Scholar 

  82. Ward, A.J., Axford, S., and Krause, J., Mixed-species schooling in fish: the sensory mechanisms and costs of shoaling choice, Behav. Ecol. Sociobiol., 2002, vol. 52, pp. 152–187.

    Article  Google Scholar 

  83. West, S.A., Griffin, A.S., and Gardner, A., Social semantics: altruism, cooperation, mutualism, strong reciprocity, and group selection, J. Evol. Biol., 2007, vol. 20, no. 2, pp. 415–432.

    Article  CAS  PubMed  Google Scholar 

  84. Williams, G., Adaptation and Natural Selection, Princeton: Princeton Univ. Press, 1966, pp. 232–249.

    Google Scholar 

  85. Wilson, D.S. and Cowell, R.K., The evolution of sex ratio in structured demes, Evolution, 1981, vol. 35, pp. 882–897.

    Article  PubMed  Google Scholar 

  86. Wilson, E.O., Sociobiology, Harvard Univ. Press, 1975a.

    Google Scholar 

  87. Wilson, D.S., A theory of group selection, Proc. Natl. Acad. Sci. U. S. A., 1975b, vol. 72, pp. 143–146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wilson, A.M., Lowe, J.C., Roskilly, K., Hudson, P.E., Golabek, K.A., and Menutt, J.W., Locomotion dynamics of hunting in wild cheetahs, Nature, 2013, vol. 498, pp. 185–189.

    Article  CAS  PubMed  Google Scholar 

  89. Wynne-Edwards, V., Animal Dispersion in Relation to Social Behavior, Edinburgh: Oliver and Boid, 1962.

    Google Scholar 

  90. Yudakov, A.G. and Nikolaev, I.G., Zimnyaya ekologiya amurskogo tigra (Winter Ecology of the Amur Tiger), Vladivostok: Dal’nauka, 2012.

    Google Scholar 

  91. Zahavi, A., Altruism as a handicap: the limitation of kin selection and reciprocity, J. Avian Biol., 1995, vol. 20, no. 1, pp. 1–3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Severtsov.

Additional information

Translated by M. Batrukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Severtsov, A.S. Group Selection. Biol Bull Russ Acad Sci 45, 691–698 (2018). https://doi.org/10.1134/S1062359018070142

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359018070142

Keywords:

Navigation