Skip to main content
Log in

Thermal resistance, preferred and avoidance temperatures of Cyclops strenuus Fischer, 1851, and their relation to optimal, pessimal, and tolerant temperatures

  • Ecology
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Ranges of preferred and avoidance temperatures in Cyclops strenuus Fischer, 1851 were determined based on the results of its experimental testing in the thermal gradient device. It is established that the process of temperature selection occurs with an overshoot. It is noted that copepods started to select the final preferred temperatures on the 8th day (temperatures above 26°C were avoided; the avoidance of low temperatures was not recorded). The average value of the critical thermal maximum for the season was determined. It is found that optimal, pessimal, and tolerant temperatures can be calculated on the scale of the species tolerance according to values of preferred and avoidance temperatures as well as according to values of the temperature range of regulation of the critical thermal maximum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Becker, C.D. and Genoway, R.G., Evaluation of the critical thermal maximum for determining thermal tolerance of freshwater fish, Envir. Biol. Fish, 1979, vol. 4, no. 3, pp. 245–256.

    Article  Google Scholar 

  • Brett, J.R., Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (Oncorhynchus nerka), Am. Zool., 1971, vol. 11, pp. 99–113.

    Article  Google Scholar 

  • Britz, P.J. and Hecht, T., Temperature preferences and optimum temperature for growth of African sharptooth catfish (Glorias gariepinus) larvae and post-larvae, Aquaculture, 1987, vol. 63, pp. 205–214.

    Article  Google Scholar 

  • Bückle, R.L.F., Díaz, H.F., Correa Sandoval, F., Barion Sevilla, B., and Hernindez Rodriguez, M., Diel thermoregulation of the crawfish Procambarus clarkii (Crustacea, Cambaridae), J. Therm. Biol., 1994, vol. 19, pp. 419–422.

    Article  Google Scholar 

  • Carvalho, G.R. and Crisp, D.S., The clonal ecology of daphnia magna (Crustacea: Cladocera). I. Temporal changes in the clonal structure of a natural population, J. Animal. Ecol., 1987, vol. 56, no. 2, pp. 453–468.

    Article  Google Scholar 

  • Chown, S.L. and Terblanche, J.S., Physiological diversity in insects: ecological and evolutionary contexts, Adv. Insect Physiol., 2007, vol. 33, pp. 50–152.

    Article  Google Scholar 

  • Cowles, R.B. and Bogert, C.M., A preliminary study of the thermal requirements of desert reptiles, Bull. Amer. Mus. Nat. Hist., 1944, vol. 83, pp. 265–296.

    Google Scholar 

  • Cox, D.K., Effects of three heating rates on the critical thermal maximum of bluegill, Therm. Ecol. Springfield: Nat. Tech. Inf. Serv., 1974, pp. 158–163.

    Google Scholar 

  • Crawshaw, L.I., Physiological and behavioural reactions of fish to temperature change, J. Fish. Res. Board Can., 1977, vol. 24, pp. 730–734.

    Article  Google Scholar 

  • Diaz, F. and Buckle, L.F., Effect of the critical thermal maximum on the preferred temperatures of Ictalurus punctatus exposed to constant and fluctuating temperatures, J. Therm. Biol., 1999, vol. 24, pp. 155–160.

    Article  Google Scholar 

  • Do, H.F., Espina, S., and Bückle, L.F., Thermal stress responses of Procambarus clarkii, Riv. Ital. Aquacolt., 1994, vol. 29, pp. 149–154.

    Google Scholar 

  • Dregol’skaya, I.N. and Korotneva, N.V., Dynamics of heat-resistance of Hydra depending on short-term temperature acclimation, Ekologiya, 1980, no. 5, pp. 84–87.

    Google Scholar 

  • Einsle, U., Die äußeren Bedingungen der Diapause planktisch lebender Cyclops-Arten, Arch. Hydrobiol., 1967, vol. 63, pp. 387–403.

    Google Scholar 

  • Einsle, U., Crustacea: Copepoda: Calanoida und Cyclopoida. Süßwasserfauna von Mitteleuropa, V. 8/4-1, Stuttgart: Gustav Fischer Verlag, 1993.

    Google Scholar 

  • Elagina, T.S., Influence of the discharge of heated water of the Kostroma GRES on the zooplankton of the Gorky Reservoir, in Vliyanie teplovykh elektrostantsii na gidrologiyu i biologiyu vodoemov: Mater. Vtorogo simpoz. (Influence of Thermal Power Plants on Hydrology and Biology of Water Bodies: Proc. Second Sympos.), Borok: IBVV, 1974, pp. 49–50.

    Google Scholar 

  • Elbourn, C.A., The life cycle of Cyclops strenuus strenuus Fischer in a small pond, J. Anim. Ecol., 1966, vol. 35, pp. 333–347.

    Article  Google Scholar 

  • Elgmork, K., A resting stage without encystment in the annual cycle of the freshwater copepod Cyclops strenuus strenuus, Ecology, 1955, vol. 36, pp. 739–743.

    Article  Google Scholar 

  • Elgmork, K., Seasonal occurrence of Cyclops strenuus strenuus in relation to environment in small water bodies in southern Norway, Folia Limnol. Scand., 1959, vol. 11, pp. 1–196.

    Google Scholar 

  • Elgmork, K., Winter reproduction strategies in freshwater cyclopoids, Verh. Int. Ver. Limnol., 1991, vol. 24, pp. 2844–2846.

    Google Scholar 

  • Frisch, D., Lebenszyklus- und Besiedlungßstrategien cyclopoider Copepoden (Cyclopoida, Copepoda) im amphibischen Lebensraum einer Tieflandflußaue (Unteres Odertal, Brandenbürg), PhD Thesis, Berlin: Freie Univ. Berlin, 2000.

    Google Scholar 

  • Frisch, D., Life cycles of the two freshwater copepods Cyclops strenuus Fischer and Cyclops insignis Claus (Cyclopoida, Copepoda) in an amphibious floodplain habitat, Hydrobiologia, 2001, vol. 453/454, pp. 285–293.

    Article  Google Scholar 

  • Frisch, D., Dormancy, dispersal and the survival of cyclopoid copepods (Cyclopoida, Copepoda) in a lowland floodplain, Freshwater Biol., 2002, vol. 47, pp. 1269–1281.

    Article  Google Scholar 

  • Fry, F.E.J., Effect of the environment on animal activity, Univ. Toronto Studies, Biol. Ser., no. 55, Publ. Ont. Fish. Res. Lab., 1947, no. 68.

  • Golovanov, V.K., Temperaturnye kriterii zhiznedeyatel’nosti presnovodnykh ryb (The Temperature Criteria of Life Activity of Freshwater Fishes), Moscow: Poligraf-plyus, 2013.

    Google Scholar 

  • Goss, L.B., Temperature tolerance determinations for Daphnia, in Aquatic Toxicology, Eaton, J.G., Parrish, P.R., and Hendricks, A.C., Eds., Philadelphia: Am. Soc. Test. Mater., 1980, pp. 354–365.

    Chapter  Google Scholar 

  • Heath, W.G., Thermoperiodism in Searun cutthroat trout (Salmo clarki clarki), Science, 1963, vol. 142, pp. 486–488.

    Article  CAS  PubMed  Google Scholar 

  • Hernandez, R.M., Bückle, R.L.F., and Diaz, H.F., Preferred temperature of Macrobrachium tenellum (Crustacea, Palaemonidae), Riv. Ital. Aquac., 1995, vol. 30, pp. 93–96.

    Google Scholar 

  • Hoffmann, A.A., Sorensen, J.G., and Loeschcke, V., Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches, J. Therm. Biol., 2003, vol. 28, pp. 175–216.

    Article  Google Scholar 

  • Holynska, M. and Dahms, H.-U., New diagnostic microcharacters of the cephalothoracic appendages in Cyclops O.F. Muller, 1776 (Crustacea, Copepoda, Cyclopoida), Zoosystema, 2004, vol. 26, no. 2, pp. 175–198.

    Google Scholar 

  • Hopp, U. and Maier, G., Survival and development of five species of cyclopoid copepods in relation to food supply: experiments with algal food in a flow-through system, Freshwater Biol., 2005, vol. 50, pp. 1454–1463.

    Article  Google Scholar 

  • Hutchinson, V.H., Critical thermal maxima in salamanders, Physiol. Zool., 1961, vol. 34, pp. 92–125.

    Article  Google Scholar 

  • Jersabek, C.D., Brancel, A., Stoch, F., and Schabetsberger, R., Distribution and ecology of copepods in mountainous regions of the Eastern Alps, Hydrobiologia, 2001, vols. 453/454, pp. 309–324.

    Article  Google Scholar 

  • Jobling, M., Temperature tolerance and the final preferendum— rapid methods for the assessment of optimum growth temperatures, J. Fish. Biol., 1981, vol. 19, pp. 439–455.

    Article  Google Scholar 

  • Johansen, P.H. and Cross, J.A., Effects of sexual maturation and sex steroid hormone treatment on the temperature preference of the guppy, Poecilia reticulata (Peters), Can. J. Zool., 1980, vol. 58, pp. 586–588.

    Article  CAS  Google Scholar 

  • Kelsch, S.W., Temperature selection and performance by bluegills: evidence for selection in response to available power, Trans. Am. Fish. Soc., 1996, vol. 125, pp. 948–955.

    Article  Google Scholar 

  • Khan, M.F., The effect of constant and varying temperatures on the development of Acanthocyclops viridis (Jurine), Proc. Roy. Irish Acad., 1965, vol. 64, pp. 117–130.

    CAS  Google Scholar 

  • Laberge, S. and Hann, B.J., Acute temperature and oxygen stress among genotypes of Daphnia pulex and Simocephalus vetulus (Cladocera: Daphniidae) in relation to environmental conditions, Can. J. Zool., 1990, vol. 68, pp. 2257–2263.

    Article  Google Scholar 

  • Lagerspetz, K.Y.H., Thermal avoidance and preference in Daphnia magna, J. Therm. Biol., 2000, vol. 25, pp. 405–410.

    Article  CAS  PubMed  Google Scholar 

  • Lamkemeyer, T., Zeis, B., and Paul, R.J., Temperature acclimation influences temperature-related behaviour as well as oxygen-transport physiology and biochemistry in the water flea Daphnia magna, Can. J. Zool., 2003, vol. 81, pp. 237–249.

    Article  CAS  Google Scholar 

  • Lowe, C.H. and Vance, V.J., Acclimation of the critical thermal maximum of the reptile Urosaurus ornatus, Science, 1955, vol. 122, pp. 73–74.

    Article  PubMed  Google Scholar 

  • Macisaac, H.J., Hebert, P.D.N., and Schwartz, S.S., Interand intraspecific variation in acute thermal tolerance of Daphnia, Physiol. Zool., 1985, vol. 58, pp. 350–355.

    Article  Google Scholar 

  • Maier, G., The effect of temperature on the development, reproduction and longevity of two common cyclopoid copepods—Eucyclops serrulatus (Fischer) and Cyclops strenuus (Fischer), Hydrobiologia, 1990, vol. 203, pp. 165–175.

    Article  Google Scholar 

  • Mikitchak, T.I. and Reshetilo, O.S., The spatial distribution of copepods (Crustacea: Copepoda) in water bodies of the Chernogor Mountain Range (Ukrainian Carpathians), Scientific Bases of Preservation of Biotic Diversity, 2011, vol. 2 (9), no. 1, pp. 285–294.

    Google Scholar 

  • Monchenko, V.I., Gnathostomatous Cyclopoids: Cyclops (Cyclopidae), in Fauna of Ukraine, 1974, vol. 27, no. 3.

    Google Scholar 

  • Munro, I.G., The effect of temperature on the development of egg, naupliar and copepodite stages of two species of copepods, Cyclops vicinus (Uljanin) and Eudiaptomus gracilis (Sars), Oecologia, 1974, vol. 16, pp. 355–367.

    Article  CAS  PubMed  Google Scholar 

  • Næss, T. and Nilssen, J.P., Diapausing fertilized adults: a new pattern of copepod life cycle, Oecologia, 1991, vol. 86, pp. 368–371.

    Article  PubMed  Google Scholar 

  • Nichelmann, M., Some characteristics of the biological optimum temperature, J. Therm. Biol., 1983, vol. 8, pp. 69–71.

    Article  Google Scholar 

  • Opredelitel’ zooplanktona i zoobentosa presnykh vod Evropeiskoi Rossii (Identification Guide to Freshwater Zooplankton and Zoobenthos of the European Part of Russia), vol. 1: Zooplankton (Zooplankton), Moscow: KMK, 2010.

  • Otto, G.R., The effects of acclimation to cyclic thermal regimes on heat tolerance of the western mosquitofish, Trans. Am. Fish. Soc., 1974, vol. 103, pp. 331–335.

    Article  Google Scholar 

  • Paladino, V.K., Spotila, J.R., Schubauer, J.P., and Kowalski, K.T., The critical thermal maximum: a technique used to elucidate physiological stress and adaptation in fish, Rev. Can. Biol., 1980, vol. 39, pp. 115–122.

    Google Scholar 

  • Pashkova, I.M., Vasyanin, S.I., and Glushankova, M.A., The effect of seasonal thermal acclimation of mussels in the White Sea on the population variability and survival at elevated temperature, Izv. Akad. Nauk, Ser. Biol., 1993, no. 4, pp. 634–638.

    Google Scholar 

  • Pashkova, I.M. and Korotneva, N.V., Population analysis of changes in the level of heat-resistance of waterlouses (Asellus aquaticus L.) during reproduction, Izv. Akad. Nauk, Ser. Biol., 1998, no. 6, pp. 745–750.

    Google Scholar 

  • R Development Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, 2009. http://www.R-project.org.

  • Reutter, J.M. and Herdendorf, C.E., Laboratory estimates of the seasonal final temperature preferenda of some Lake Erie fish, in Proc. 17th. Conf. Great Lakes Res., Inter. Ass. Great Lakes Res., 1974, part 1, pp. 59–67.

    Google Scholar 

  • Reynolds, W.W., The final thermal preferendum of fishes: shuttling behavior and acclimation overshoot, Hydrobiologia, 1978, vol. 57, no. 2, pp. 123–124.

    Article  Google Scholar 

  • Reynolds, W.W. and Casterlin, M.E., Behavioral thermoregulation and the “final preferendum” paradigm, Am. Zool., 1979, vol. 19, pp. 211–224.

    Article  Google Scholar 

  • Rosetti, Y., Rosetti, L., and Cabanac, M., Annual oscillation of preferred temperature in the freshwater snail Lymnaea awicularia: effect of light and temperature, Anim. Behav., 1989, vol. 37, no. 6, pp. 897–907.

    Article  Google Scholar 

  • Sarvala, J., Effect of temperature on the duration of egg, nauplius and copepodite development of some freshwater copepoda, Freshwater Biol., 1979, vol. 9, pp. 515–534.

    Article  Google Scholar 

  • Sellami, I., Guermazi, W., Hamza, A., Aleya, L., and Ayadi, H., Seasonal dynamics of zooplankton community in four Mediterranean reservoirs in humid area (Beni Mtir: north of Tunisia) and semiarid area (Lakhmes, Nabhana and Sidi Saad: Center of Tunisia), J. Therm. Biol., 2010, vol. 35, pp. 392–400.

    Article  Google Scholar 

  • Shapiro, S.S. and Wilk, M.B., An analysis of variance test for normality (complete samples), Biometrika, 1965, vol. 52, pp. 591–611.

    Article  Google Scholar 

  • Terblanche, J.S., Sinclair, B.J., Klok, C.J., McFarlane, M.L., and Chown, S.L., The effects of acclimation on thermal tolerance, desiccation resistance and metabolic rate in Chirodica chaleoptera (Coleoptera: Chrysomelidae), J. Insect Physiol., 2005, vol. 51, pp. 1013–1023.

    Article  CAS  PubMed  Google Scholar 

  • Ueda, H. and Reid, J.W., Copepoda: Cyclopoida genera Mesocyclops and Thermocyclops, in Guides to the Identification of the Microinvertebrates of the Continental Waters of the World, Dumont, H.J., Ed., Amsterdam: Backhuys, 2003, vol. 20.

  • Ushakov, B.P., Dregol’skaya, I.M., and Pashkova, I.M., Correlation between the body heat resistance and fertility in Hydra oligactis and Asellus aquaticus, Izv. Akad. Nauk SSSR, Ser. Biol., 1984, no. 6, pp. 887–893.

    Google Scholar 

  • Verbitsky, V.B., Verbitskaya, T.I., and Golovanova, E.V., Critical thermal maximum of Daphnia longispina (O.F. Muller, 1785) (Crustacea: Cladocera) in nature and experiment, Biol. Vnutr. Vod, 2002, no. 4, pp. 45–50.

    Google Scholar 

  • Verbitsky, V.B. and Verbitskaya, T.I., Thermoresistance of Bosmina longirostris O.F. Muller (Crustacea: Cladocera) and its dependence on the environmental temperature, Biol. Vnutr. Vod, 2002, no. 2, pp. 55–59.

    Google Scholar 

  • Verbitsky, V.B., Verbitskaya, T.I., and Malysheva, O.A., The influence of various temperature regimes on the abundance dynamics and thermal tolerance of cladoceran Ceriodaphnia quadrangula (O.F. Müller, 1785), Inland Water Biol., 2009, vol. 2, no. 1, pp. 67–71.

    Article  Google Scholar 

  • Verbitsky, V.B. and Verbitskaya, T.I., Thermal preference and avoidance in cladoceran Daphnia magna Straus (Crustacea, Cladocera) acclimated to constant temperature, Biol. Bull. (Moscow), 2012, vol. 39, no. 1, pp. 93–98.

    Article  Google Scholar 

  • Verbitsky, V.B., Verbitskaya, T.I., and Malysheva, O.A., Temperature responses of Ceriodaphnia quadrangula (O.F.Müller, 1785) (Crustacea, Cladocera) from the littoral of the Rybinsk Reservoir, Inland Water Biol., 2014a, vol. 7, no. 4, pp. 313–317.

    Article  Google Scholar 

  • Verbitsky, V.B., Verbitskaya, T.I., and Malysheva, O.A., Temperature behavior of the cladoceran Simocephalus vetulus O.F. Müller, 1776 (Crustacea, Cladocera) from the Rybinsk Water Reservoir, Dokl. Biol. Sci., 2014b, vol. 455, no. 2, pp. 91–93.

    Article  CAS  PubMed  Google Scholar 

  • Verbitsky, V.B., Verbitskaya, T.I., and Malysheva, O.A., Thermal preference, avoidance, and toleration in cladocerans Simocephalus vetulus (O.F. Müller, 1776), in Tr. KarNTs RAN (Transactions of Karelian Research Center, Russian Academy of Sciences), Petrozavodsk: KarNTs RAN, 2015, vol. 1, pp. 20–28.

    Google Scholar 

  • Wierzbicka, M. and Kedzierski, S., On the dormancy state of some species of Cyclopoida under experimental and natural conditions, Pol. Arch. Hydrobiol., 1964, vol. 12, pp. 47–80.

    Google Scholar 

  • Willam-Howze, J., Dormancy in the free-living copepod orders Cyclopoida, Calanoida and Harpacticoida, Oceanogr. Mar. Biol. Ann. Rev., 1997, vol. 35, pp. 257–321.

    Google Scholar 

  • Wolska, M. and Piasecki, W.G., Seasonality of zooplankton changes phenomena observed in the estuarine part of the Oder River, Limnol. Rev., 2007, vol. 7, no. 2, pp. 117–121.

    Google Scholar 

  • Zhdanova, S.M. and Lazareva, V.I., Vidovoi sostav i prostranstvennoe raspredelenie letnego (iyul’) zooplanktona ozera Glubokogo (Species Composition and Spatial Distribution of Summer (July) Zooplankton of Lake Glubokoe), Korovchinskii, N.M. and Smirnov, N.N., Eds., Tr. Gidrobiol. St. na Glubokom ozere (Transactions of Hydrobiological Station on Lake Glubokoe), Moscow: KMK, vol. 10, pp. 51–66.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Verbitsky.

Additional information

Original Russian Text © V.B. Verbitsky, A.K. Grishanin, O.A. Malysheva, E.N. Medyantseva, T.I. Verbitskaya, 2017, published in Izvestiya Akademii Nauk, Seriya Biologicheskaya, 2017, No. 4, pp. 444–453.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verbitsky, V.B., Grishanin, A.K., Malysheva, O.A. et al. Thermal resistance, preferred and avoidance temperatures of Cyclops strenuus Fischer, 1851, and their relation to optimal, pessimal, and tolerant temperatures. Biol Bull Russ Acad Sci 44, 439–448 (2017). https://doi.org/10.1134/S1062359017030104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359017030104

Navigation