Skip to main content
Log in

The nonspecific metabolic reaction of cells to extreme exposures

  • Biochemistry
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

This work summarizes the authors’ recent investigations into metabolic changes in blood lymphocytes, cancer cells, and hepatocytes during tumor growth from mice with Ehrlich ascites carcinoma. These results were compared with the metabolic changes in hepatocytes from rats after hyperthermia and in lymphocytes from patients with different diseases. It was shown that the extreme conditions induced metabolic changes that were independent of the cell type or the nature of the extreme factor. These changes characterized the metabolic mechanisms of cell adaptation and disadaptation. The concept of the “nonspecific metabolic reaction” of cells to extreme exposures had been introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bing, Z., Yang, G., Zhang, Y., Wang, F., Ye, C., Sun, J., Zhou, G., and Yang, L., Proteomic analysis of effects by X-rays and heavy ion in HeLa cells, Rad. Oncol., 2014, vol. 48, no. 2, pp. 142–154.

    CAS  Google Scholar 

  • Brahimi-Horn, M.C., Bellot, G., and Pouyssegur, J., Hypoxia and energetic tumour metabolism, Curr. Opin. Genet. Dev., 2011, vol. 21, pp. 67–72.

    Article  CAS  PubMed  Google Scholar 

  • Calabrese, V., Cornelius, C., Dinkova-Kostova, A.T., Calabrese, E.J., and Mattson, M.P., Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders, Antioxid. Redox Signal., 2010, vol. 13, no. 11, pp. 1763–1811.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • DeBerardinis, R.J., Mancuso, A., Daikhin, E., Nissim, I., Yudkoff, M., Wehrli, S., and Thompson, C.B., Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis, Proc. Natl. Acad. Sci. USA, 2007, vol. 104, no. 49, pp. 19345–19350.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • DeBerardinis, R.J., Lum, J.J., Hatzivassiliou, G., and Thompson, C.B., The biology of cancer: metabolic reprogramming fuels cell growth and proliferation, Cell Metab., 2008, vol. 7, no. 1, pp. 11–20.

    Article  CAS  PubMed  Google Scholar 

  • Fischer, K., Hoffmann, P., Voelkl, S., Meidenbauer, N., Ammer, J., Edinger, M., Gottfried, E., Schwarz, S., Rothe, G., Hoves, S., Renner, K., Timischl, B., Mackensen, A., KunzSchughart, L., Andreesen, R., Krause, S.W., and Kreutz, M., Inhibitory effect of tumor cell-derived lactic acid on human T cells, Blood, 2007, vol. 109, pp. 3812–3819.

    Article  CAS  PubMed  Google Scholar 

  • Foldi, M., Stickeler, E., Bau, L., Kretz, O., Watermann, D., Gitsch, G., Kayser, G., Zur Hausen, A., and Coy, J.F., Transketolase protein TKTL1 overexpression: a potential biomarker and therapeutic target in breast cancer, Oncol. Rep., 2007, vol. 17, pp. 841–845.

    PubMed  Google Scholar 

  • Fomenko, E.Yu., Inzhevatkin, E.V., Slepov, E.V., and Savchenko, A.A., Features of metabolism of Ehrlich ascites tumor cells in mice in tumor growth dynamics, Vestn. Krasnoyarsk. Univ., Estestv. Nauki, 2005, vol. 5, pp. 261–263.

    Google Scholar 

  • Fomenko, E.Yu., Slepov, E.V., Inzhevatkin, E.V., and Savchenko, A.A., Bioluminescent method for determining the concentrations of metabolic substrates and cofactors in lymphocytes, Biomed. Khim., 2006, vol. 52, no. 5, pp. 507–510.

    CAS  PubMed  Google Scholar 

  • Furuta, E., Okuda, H., Kobayashi, A., and Watabe, K., Metabolic genes in cancer: their roles in tumor progression and clinical implications, Biochim. Biophys. Acta, 2010, vol. 1805, no. 2, pp. 141–152.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Grant, C.M., Metabolic reconfiguration is a regulated response to oxidative stress, J. Biol., 2008, vol. 7. http://jbiolcom/content/7/1/1

    Google Scholar 

  • Inzhevatkin, E.V., Nefedov, V.P., and Savchenko, A.A., Neural network prediction of oxygen consumption by perfused rat liver by the activity of oxidoreductases in the course of the recovery period after exposure to hyperthermia, Vestn. Novykh Med. Tekhnol., 2000a, no. 1, pp. 25–28.

    Google Scholar 

  • Inzhevatkin, E.V., Savchenko, A.A., Al’brant, A.I., and Nefedov, V.P., A study of metabolic changes in the rat liver in the course of the recovery period after exposure to hyperthermia, Vopr. Med. Khim., 2000b, vol. 46, no. 2, pp. 135–139.

    CAS  PubMed  Google Scholar 

  • Inzhevatkin, E.V., Savchenko, A.A., Egorova, A.B., Al’brant, A.I., and Nefedov, V.P., Effect of the duration of the recovery period after a short-term hyperthermia on the metabolism of perfused rat liver, Bull. Exp. Biol. Med., 2000c, vol. 129, no. 4, pp. 414–416.

    Article  Google Scholar 

  • Inzhevatkin, E.V., Fomenko, E.Yu., Slepov, E.V., and Savchenko, A.A., Metabolism of lymphocytes in mice with Ehrlich ascites carcinoma, Bull. Exp. Biol. Med., 2004, vol. 138, no. 5, pp. 497–500.

    Article  CAS  PubMed  Google Scholar 

  • Inzhevatkin, E.V., Fomenko, E.Yu., Slepov, E.V., and Savchenko, A.A., Metabolic changes of lymphocytes and neoplastic cells in mice with Ehrlich ascites carcinoma during tumor growth, Biol. Bull. (Moscow), 2007, vol. 34, no. 3, pp. 310–313.

    Article  CAS  Google Scholar 

  • Inzhevatkin, E.V. and Savchenko, A.A., Metabolic changes in the liver of mice with Ehrlich ascites carcinoma, Bull. Exp. Biol. Med., 2014, vol. 157, no. 6, pp. 785–788.

    Article  CAS  PubMed  Google Scholar 

  • Kacevska, M., Downes, M.R., Sharma, R., Evans, R.M., Clarke, S.J., Liddle, C., and Robertson, G.R., Extrahepatic cancer suppresses nuclear receptor regulated drug metabolism, Clin. Cancer Res., 2011, vol. 17, no. 10, pp. 3170–3180.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim, J.W., Tchernyshyov, I., Semenza, G.L., and Dang, C.V., HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia, Cell Metab., 2006, no. 3, pp. 177–185.

    Article  PubMed  Google Scholar 

  • Kroemer, G. and Pouyssegur, J., Tumor cell metabolism: cancer’s Achilles’ heel, Cancer Cell, 2008, vol. 13, pp. 472–782.

    Article  CAS  PubMed  Google Scholar 

  • Lapeshin, P.V., Savchenko, A.A., Dykhno, Yu.A., Denisov, I.N., Moskovskikh, M.N., and Slepov, E.V., Status of the activity of NAD(P)-dependent dehydrogenases in blood lymphocytes and tumor cells and healthy lung tissue in patients with small cell lung cancer, Sib. Onkol. Zh., 2005, vol. 15, no. 3, pp. 48–53.

    Google Scholar 

  • Martinez-Outschoorn, U.E., Lin, Z., Trimmer, C., Flomenberg, N., Wang, C., Pavlides, S., Pestell, R.G., Howell, A., Sotgia, F., and Lisanti, M.P., Cancer cells metabolically “fertilize” the tumor microenvironment with hydrogen peroxide, driving the Warburg effect: implications for pet imaging of human tumors, Cell Cycle, 2011, no. 10, pp. 2504–2520.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Muralidharan, S. and Mandrekar, P., Cellular stress response and innate immune signaling: integrating pathways in host defense and inflammation, J. Leukocyte Biol., 2013, vol. 94, no. 6, pp. 1167–1184.

    Article  PubMed Central  PubMed  Google Scholar 

  • Papandreou, I., Cairns, R.A., Fontana, L., Lim, A.L., and Denko, N.C., HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption, Cell Metab., 2006, vol. 3, no. 3, pp. 187–197.

    Article  CAS  PubMed  Google Scholar 

  • Remmel’, N.N., Kratasyuk, V.A., Maznyak, O.M., Inzhevatkin, E.V., and Nefedov, V.P., Bioluminescent analysis of intensity of pathological oxidative processes in cells of perfused rat liver after hyperthermia, Bull. Exp. Biol. Med., 2003, vol. 135, no. 1, pp. 43–45.

    Article  PubMed  Google Scholar 

  • Rupenko, A.P., Kruglik, O.V., and Morgulis, I.I., Oxygen supply of rat liver under the conditions of isolated perfusion, Dokl. Biol. Sci., 2008a, vol. 418, pp. 4–6.

    Article  CAS  PubMed  Google Scholar 

  • Rupenko, A.P., Kruglik, O.V., and Morgulis, I.I., Functional activity of isolated perfused rat liver depends on medium composition, Bull. Exp. Biol. Med., 2008b, vol. 146, no. 7, pp. 107–110.

    Article  CAS  PubMed  Google Scholar 

  • Savchenko, A.A. and Suntsova, L.N., Highly sensitive determination of dehydrogenase activity in human peripheral blood lymphocytes by bioluminescent method, Lab. Delo, 1989, no. 11, pp. 23–25.

    PubMed  Google Scholar 

  • Savchenko, A.A., Bioluminescent determination of the activity of lymphocytic NAD and NADP-dependent glutamate dehydrogenases, Lab. Delo, 1991, no. 11, pp. 22–25.

    PubMed  Google Scholar 

  • Savchenko, A.A. and Manchuk, V.T., Metabolic mechanism of immune deficiency development in adaptation to the conditions of the Far North, Byul. SO RAMN, 2003, vol. 108, no. 2, pp. 98–101.

    Google Scholar 

  • Savchenko, A.A., Lapeshin, P.V., and Dykhno, Yu.A., Characteristics of the immune status and activity of metabolic enzymes of blood lymphocytes depending on the lung cancer grade, Ross. Bioterapevt. Zh., 2004, vol. 3, no. 3, pp. 19–23.

    Google Scholar 

  • Savchenko, E.A., Savchenko, A.A., Gerasimchuk, A.N., and Grishchenko, D.A., Evaluation of the metabolic status of platelets in normalcy and in ischemic heart disease, Klin. Lab. Diagnost., 2006, no. 5, pp. 33–36.

    Google Scholar 

  • Selye, H., Stress and the general adaptation syndrome, Br. Med. J., 1950, vol. 1, pp. 1383–1392.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Semenza, G.L., Hypoxia-inducible factors in physiology and medicine, Cell, 2012, vol. 148, pp. 399–408.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sharma, R., Kacevska, M., London, R., Clarke, S.J., Liddle, C., and Robertson, G., Downregulation of drug transport and metabolism in mice bearing extra-hepatic malignancies, Brit. J. Cancer, 2008, vol. 98, no. 1, pp. 91–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smirnova, O.V., Manchuk, V.T., and Savchenko, A.A., Features of clinical manifestations and characteristics of the immunopathogenesis in patients with chronic myeloid leukemia, Sib. Onkol. Zh., 2007, vol. 23, no. 3, pp. 16–22.

    Google Scholar 

  • Solov’eva, I.A., Martynova, G.P., and Savchenko, A.A., Characteristics of metabolic processes in blood lymphocytes in adolescents with chronic viral hepatites, Sib. Med. Zh., 2011, no. 8, pp. 21–25.

    Google Scholar 

  • Stanton, R.C., Glucose-6-phosphate dehydrogenase, NADPH, and cell survival, IUBMB Life, 2012, vol. 64, no. 5, pp. 362–369.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Swierczynski, J., Hebanowska, A., and Sledzinski, T., Role of abnormal lipid metabolism in development, progression, diagnosis and therapy of pancreatic cancer, World J. Gastroenterol., 2014, vol. 20, no. 9, pp. 2279–2303.

    Article  PubMed Central  PubMed  Google Scholar 

  • Tew, K.D. and Townsend, D.M., Glutathione-S-transferases as determinants of cell survival and death, Antioxid. Redox. Signal., 2012, vol. 17, no. 12, pp. 1728–1737.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Toschi, A., Lee, E., Thompson, S., Gadir, N., Yellen, P., Drain, C.M., Ohh, M., and Foster, D.A., Phospholipase D-mTOR requirement for the Warburg effect in human cancer cells, Cancer Lett., 2010, vol. 299, no. 1, pp. 72–79.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang, J., Yuan, W., Chen, Z., Wu, S., Chen, J., Ge, J., Hou, F., and Chen, Z., Overexpression of G6PD is associated with poor clinical outcome in gastric cancer, Tumour. Biol., 2012, vol. 33, no. 1, pp. 95–101.

    Article  PubMed  Google Scholar 

  • Wu, X.-H., Shen, S.-P., Mao, J.-Y., Ji, X.-X., Yao, H.T., and Zhou, S.H., Expression and significance of hypoxiainducible factor-1α and glucose transporter-1 in laryngeal carcinoma, Oncol. Lett., 2013, vol. 5, no. 1, pp. 261–266.

    PubMed Central  PubMed  Google Scholar 

  • Xu, Y., Zhang, Z., Hu, J., Stillman, I.E., Leopold, J.A., Handy, D.E., Loscalzo, J., and Stanton, R.C., Glucose-6phosphate dehydrogenase-deficient mice have increased renal oxidative stress and increased albuminuria, FASEB J., 2010, vol. 24, no. 2, pp. 609–616.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yabrov, A.A., Nonspecific cell resistance to bacterial toxins. The concept of cellular stress, Tsitologiya, 1967, vol. 9, no. 6, pp. 692–706.

    Google Scholar 

  • Yabrov, A.A., On the mechanism of cellular stress, Tsitologiya, 1969, vol. 11, no. 2, pp. 137–146.

    CAS  Google Scholar 

  • Zhang, H., Gao, P., Fukuda, R., Kumar, G., Krishnamachary, B., Zeller, K.I., Dang, C.V., and Semenza, G.L., HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity, Cancer Cell, 2007, no. 11, pp. 407–420.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, C., Zhang, Z., Zhu, Y., and Qin, S., Glucose-6phosphate dehydrogenase: a biomarker and potential therapeutic target for cancer, Anticancer. Agents Med. Chem., 2014, vol. 14, no. 2, pp. 280–289.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Inzhevatkin.

Additional information

Original Russian Text © E.V. Inzhevatkin, A.A. Savchenko, 2016, published in Izvestiya Akademii Nauk, Seriya Biologicheskaya, 2016, No. 1, pp. 6–16.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inzhevatkin, E.V., Savchenko, A.A. The nonspecific metabolic reaction of cells to extreme exposures. Biol Bull Russ Acad Sci 43, 2–11 (2016). https://doi.org/10.1134/S1062359016010064

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359016010064

Keywords

Navigation