Skip to main content
Log in

Effect of lymphocyte morphogenetic activity on organism reactivity and resistibility

  • Reviews
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

In addition to their role in physiological and reparative regeneration of tissues, lymphoid cells are involved in the implementation of protective and adaptive reactions not related to immune response. The present review addresses the role of lymphocytes in organism reactivity changes upon hypoxia and hyperthermia and in modification of metabolic activity of cells. Mechanisms that underlie the control of resistibility to ionizing radiation and neoplastic processes by the lymphocytes and the role of lymphocytes in adaptive response development and enhancement of the organism’s resistance to stressful impacts are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashdown, Maria L. and Ashdown, Martin L., Therapeutic strategy for treating autoimmune and degenerative diseases, WO Patent no. WO2006026821, September 8, 2004.

    Google Scholar 

  • Babaeva, A.G., Regeneratsiya i sistema immunogeneza (Regeneration and Immunogenesis System), Moscow: Meditsina, 1985.

    Google Scholar 

  • Babaeva, A.G., Regeneratsiya: fakty i perspektivy (Regeneration: Facts and Prospects), Moscow: Izd. RAMN, 2009.

    Google Scholar 

  • Babaeva, A.G. and Demskii, V.I., Changes in the resistance of partially hepatectomized mice to transplantable tumors in the period of completion of liver regeneration, Byull. Eksp. Biol. Med., 1977, vol. 3, no. 3, pp. 326–328.

    Google Scholar 

  • Babaeva, A.G., Gevorkyan, N.M., and Zotikov, E.A., Rol’ limfotsitov v operativnom izmenenii programmy razvitiya tkanei (The Role of Lymphocytes in an Operative Change in Tissues Development Program), Moscow: Izd. RAMN, 2009.

    Google Scholar 

  • Beilharz, M.W., Sammels, L.M., Paun, A., et al., Timed ablation of regulatory CD4+ T cells can prevent murine AIDS progression, J. Immunol., 2004, vol. 172, no. 8, pp. 4917–4925.

    Article  CAS  PubMed  Google Scholar 

  • Belkowski, S.M., Zhu, J., Liu-Chen, L.Y., et al., Detection of kappa-opioid receptor mRNA in immature T cells, Adv. Exp. Med. Biol., 1995, no. 373, pp. 11–16.

    Article  CAS  PubMed  Google Scholar 

  • Beschastnov, V.V., Izmailov, S.G., Bagryantsev, M.V., et al., Activity of reparative regeneration processes under local circulatory hypoxia of near-wound surface, Novosti Khirurgii, 2015, vol. 23, no. 6, pp. 612–618.

    Article  Google Scholar 

  • Bohuslavova, R., Kolar, F., Sedmera, D., et al., Partial deficiency of HIF-1α stimulates pathological cardiac changes in streptozotocin-induced diabetic mice, BMC Endocr. Disord., 2014, vol. 14, pp. 1–14.

    Article  CAS  Google Scholar 

  • Bondar’, G.V., Kairyak, O.V., Lisovskaya, N.Yu., and Kanibolotskii, A.L., Determination of individual sensitivity to 5-FU in patients with malignant tumors of various localizations, Antibiot. Khimioter., 1999, no. 2, pp. 25–28.

    Google Scholar 

  • Bordyushkov, Yu.N., Analysis of experimental data to improve the results of autohemotherapy and autolymphochemotherapy, in Materialy 5 Vserossiiskogo s”ezda onkologov “Vysokie tekhnologii v onkologii” (Proceedings of the 5 All-Russia Congress of Oncologists “High Technologies in Oncology”), Kazan, 2000, vol. 3, pp. 307–308.

    Google Scholar 

  • Burzyn, D., Kuswanto, W., Kolodin, D., et al., A special population of regulatory T cells potentiates muscle repair, Cell, 2013, vol. 155, no. 6, pp. 1282–1295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caldwell, C.C., Kojima, H., Lukashev, D., et al., Differential effects of physiologically relevant hypoxic conditions on T lymphocyte development and effector functions, J. Immunol., 2001, vol. 167, no. 11, pp. 6140–6149.

    Article  CAS  PubMed  Google Scholar 

  • Chereshnev, V.A. and Gein, S.V., β-Endorphin—an endogenous regulator of immune processes, Ross. Fiziol. Zh. im. I.M. Sechenova, 2009, vol. 95, no. 12, pp. 1279–1290.

    CAS  PubMed  Google Scholar 

  • Chernykh, V.A., Pronkina, N.V., Stupak, V.V., et al., Circulating hematopoietic and endothelial progenitors in the peripheral blood of patients with traumatic brain injury, Geny Kletki, 2011, vol. 6, no. 2, pp. 71–77.

    Google Scholar 

  • Chuang, T.K., Killam, K.F., Chuang, L.F., et al., Mu-opioid receptor gene expression in immune cells, Biochem. Biophys. Res. Commun., 1995, vol. 216, no. 3, pp. 922–930.

    Article  CAS  PubMed  Google Scholar 

  • Cosentino, M., Fietta, A.M., Ferrari, M., et al., Human CD4+CD25+ regulatory T cells selectively express tyrosine hydroxylase and contain endogenous catecholamines subserving an autocrine/paracrine inhibitory functional loop, Blood, 2007, vol. 109, no. 2, pp. 632–642.

    Article  CAS  PubMed  Google Scholar 

  • Das, G.D., Neural Grafting in the Mammalian CNS, Bjorklund, A., Ed., Stenevi, Amsterdam, 1985, pp. 23–31.

    Google Scholar 

  • Diatroptov, M.E., Kondashevskaya, M.V., Makarova, O.V., and Obernikhin, S.S., Infradian rhythms of the morphofunctional state of the thymus in rats, Ross. Fiziol. Zh. im. I.M. Sechenova, 2013, vol. 99, no. 6, pp. 729–736.

    CAS  PubMed  Google Scholar 

  • Epshtein, M.Yu., Regenerative substances in the blood and serum promoting healing of injuries and wounds and their theoretical and practical significance, Nov. Khirurg. Arkhiv, 1925, vol. 6, no. 4, pp. 449–456.

    Google Scholar 

  • Fel’, V.Ya. and Malygin, A.M., The effect of lymphoid cells of hepatectomized mice on the hepatoma 22a growth, Tsitologiya, 1974, no. 5, pp. 651–653.

    Google Scholar 

  • Ferrari, M., Cosentino, M., Marino, F., et al., Dopaminergic D1-like receptor-dependent inhibition of tyrosine hydroxylase mRNA expression and catecholamine production in human lymphocytes, Biochem. Pharmacol., 2004, vol. 67, no. 5, pp. 865–873.

    Article  CAS  PubMed  Google Scholar 

  • Garkavi, L.F., Kvakina, E.B., and Ukolova, M.A, Adaptatsionnye reaktsii i rezistentnost’ organizma (Adaptable Responses and Resistance of the Body), Rostov-on- Don: Izd. RGU, 1977.

    Google Scholar 

  • Garkavi, L.Kh., Kvakina, E.B., and Kuz’menko, T.S., Antistressornye reaktsii i aktivatsionnaya terapiya (Antistress Responses and Activation Therapy), Moscow: IMEDIS, 1998.

    Google Scholar 

  • Garkavi, L.Kh., Zhukova, G.V., Shikhlyarova, A.I., et al., Antitumor action and other regulatory effects of lowintensity electromagnetic and chemical factors in an experiment, Biophysics (Moscow), 2014, vol. 59, no. 6, pp. 944–953.

    Article  CAS  Google Scholar 

  • Gevorkyan, N.M. and Babaeva, A.G., Variability of manifestations of morphogenetic function of lymphocyte depending on the nature and location of organ damage, Vestnik RAEN, 2012, no. 1, pp. 44–47.

    Google Scholar 

  • Granov, A.M. and Shutko, A.N., Paradoksy zlokachestvennogo rosta i tkanevoi nesovmestimosti (Paradoxes of Malignant Growth and Tissue Incompatibility), St. Petersburg: Izd. Gippokrat, 2002.

    Google Scholar 

  • Grassi, F., Cattini, L., Gambari, L., et al., T cell subsets differently regulate osteogenic differentiation of human mesenchymal stromal cells in vitro, J. Tissue Eng. Regen. Med., 2016, vol. 10, no. 4, pp. 305–314.

    Article  CAS  PubMed  Google Scholar 

  • Guarcello, V., Weigent, D.A., and Blalock, J.E., Growth hormone releasing hormone receptors on thymocytes and splenocytes from rats, Cell Immunol., 1991, vol. 136, no. 2, pp. 291–302.

    Article  CAS  PubMed  Google Scholar 

  • Hendrix, S. and Nitsch, R., The role of T helper cells in neuroprotection and regeneration, J. Neuroimmunol., 2007, vol. 184, nos. 1–2, pp. 100–112.

    Article  CAS  PubMed  Google Scholar 

  • Karnaukhova, N.A., Sergievich, L.A., Ignat’ev, D.A., and Karnaukhov, V.N., Effect of ionizing radiation on the synthetic activity of blood system cells in ground squirrels in different physiological states, Biophysics (Moscow), 2008, vol. 53, no. 1, pp. 49–58.

    Article  Google Scholar 

  • Kashchenko, E.A., Cellular and humoral mechanisms of tumor-specific immunotherapy and their modulation under the influence of hyperthermia, Cand. Sci. (Biol.) Dissertation, Novosibirsk, 2009.

    Google Scholar 

  • Kavtsevich, N.N., Morphological and cytochemical features of blood cells of marine mammals in connection with adaptation to the environment, Extended Abstract of Doctoral (Biol.) Dissertation, Petrozavodsk, 2011.

    Google Scholar 

  • Kavtsevich, N.N., Erokhina, I.A., and Minzyuk, T.V., Physiological decussation of the leukocyte formula and characteristics of the blood system of seals, in Arkticheskoe morskoe prirodopol’zovanie v XXI veke–sovremennyi balans nauchnykh traditsii i innovatsii. Tezisy dokladov Mezhdunarodnoi nauchnoi konferentsii (k 80-letiyu MMBI KNTs RAN) (Arctic Marine Nature Management in the 21th Century—Current Balance of Scientific Traditions and Innovations. Abstr. Int. Sci. Conf. (on the 80th Anniversary of the Murmansk Marine Biological Institute, Karelian Research Center, Russian Academy of Sciences)), 2015, pp. 94–95.

    Google Scholar 

  • Kearns, R.J., Ringler, S., Krakowka, S., et al., The effects of extracorporeal whole body hyperthermia on the functional and phenotypic features of canine peripheral blood mononuclear cells (PBMC), Clin. Exp. Immunol., 1999, vol. 116, no. 1, pp. 188–192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krick, S., Eul, B.G., Hanze, J., et al., Role of hypoxiainducible factor-1alpha in hypoxia-induced apoptosis of primary alveolar epithelial type II cells, Am. J. Respir. Cell Mol. Biol., 2005, vol. 32, no. 5, pp. 395–403.

    Article  CAS  PubMed  Google Scholar 

  • Kucia, M., Ratajczak, J., Reca, R., et al., Tissue-specific muscle, neural and liver stem/progenitor cells reside in the bone marrow, respond to an SDF-1 gradient and are mobilized into peripheral blood during stress and tissue injury, Blood Cells Mol. Dis., 2004, vol. 32, no. 1, pp. 52–57.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, S. and Vaidya, M., Hypoxia inhibits mesenchymal stem cell proliferation through HIF1α-dependent regulation of P27, Mol. Cell Biochem., 2016, vol. 415, nos. 1–2, pp. 29–38.

    Article  CAS  PubMed  Google Scholar 

  • Labuz, D., Schreiter, A., Schmidt, Y., et al., T lymphocytes containing β-endorphin ameliorate mechanical hypersensitivity following nerve injury, Brain Behav. Immun., 2010, vol. 24, no. 7, pp. 1045–1053.

    Article  CAS  PubMed  Google Scholar 

  • Leontovich, A.A., Dronca, R.S., Suman, V.J., et al., Fluctuation of systemic immunity in melanoma and implications for timing of therapy, Front. Biosci. (Elite Ed.), 2012, no. 4, pp. 958–975.

    Article  Google Scholar 

  • Lin, Y., Tang, Y., and Wang, F., The protective effect of HIF-1α in T lymphocytes on cardiac damage in diabetic mice, Ann. Clin. Lab. Sci., 2016, vol. 46, no. 1, pp. 32–43.

    CAS  PubMed  Google Scholar 

  • Lis’ikh, Yu.I. and Popov, A.M., Morphogenetic properties of splenocytes of unilaterally nephrectomized rats with hypothermia, in Materialy 9-oi Vserossiiskoi mediko-biologicheskoi konferentsii molodykh issledovatelei “Chelovek i ego zdorov’e” (Proc. 9th All-Russia Biomed. Conf. Young Researchers “Man and His Health”), St. Petersburg, 2006.

    Google Scholar 

  • Lutsenko, G.V., Grechikhina, M.V., and D’yachkova, L.G., Regulation of ATP levels in normal and transformed T cells by autocrine factors, Immunologiya, 2005, vol. 26, no. 2, pp. 91–95.

    Google Scholar 

  • Lutsenko, G.V., Grechikhina, M.V., D’yachkova, L.G., and Sapozhnikov, A.M., Protective effect of autocrine factors of cytotoxic T-lymphocytes in chemical hypoxia, Immunologiya, 2013, vol. 34, no. 5, pp. 251–254.

    CAS  Google Scholar 

  • Lytkina, I.Yu., Role of peripheral lymphocytes in forming the therapeutic effect of the lower body irradiation in combined treatment of primary patients with advanced ovarian cancer, Extended Abstract of Cand. Sci. (Biol.) Dissertation, St. Petersburg, 2006.

    Google Scholar 

  • Majmundar, A.J., Lee, D.S., Skuli, N., et al., HIF modulation of Wnt signaling regulates skeletal myogenesis in vivo, Development, 2015, vol. 142, no. 14, pp. 2405–2412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Man’ko, V.M. and Petrov, R.V., Lymphocytic control of differentiation of hematopoietic stem cells, Klet. Transplantol. Tkan. Inzhener., 2006, vol. 2, no. 4, pp. 63–75.

    Google Scholar 

  • Meshkova, R.Ya., “Graft-versus-host” response under conditions of reparative regeneration of the spleen, Extended Abstract of Cand. Sci. (Med.) Dissertation, Moscow, 1982.

    Google Scholar 

  • Mukhamedova, Kh.T., Turdieva, D.E., Nazarova, F.A., and Petrova, T.A., Features of the immune status of infants with perinatal lesions of the central nervous system, Immunopatol. Allergol. Infektol., 2003, no. 4, pp. 17–20.

    Google Scholar 

  • Mus, V.F., Luchevaya terapiya neoperabel’nogo raka legkogo (Radiation Therapy for Inoperable Lung Cancer), St. Petersburg: St. Peterb. Univ., 1999.

    Google Scholar 

  • Palazon, A., Goldrath, A.W., Nizet, V., and Johnson, R.S., HIF transcription factors, inflammation, and immunity, Immunity, 2014, vol. 41, no. 4, pp. 518–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popova, M.F., Effect of regenerating muscle tissue on the colony-forming ability of the bone marrow of irradiated mouse, Dokl. Akad. Nauk SSSR, 1971, vol. 199, no. 2, pp. 457–459.

    CAS  PubMed  Google Scholar 

  • Popova, M.F., Radiochuvstvitel’nost’ i stimuliruyushchie svoistva regeneriruyushchikh tkanei mlekopitayushchikh (Radiosensitivity and Stimulating Properties of Regenerating Mammalian Tissues), Moscow: Nauka, 1984.

    Google Scholar 

  • Pospelov, A.L., Are there any tissue-specific stem cells in the bone marrow?, Geny Kletki, 2006, no. 1, pp. 20–21.

    Google Scholar 

  • Qi, Y., Operario, D.J., Georas, S.N., and Mosmann, T.R., The acute environment, rather than T cell subset precommitment, regulates expression of the human T cell cytokine amphiregulin, PLoS One, 2012, vol. 7, no. 6, p. e39072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu, Y.H., Peng, Y.P., Jiang, J.M., and Wang, J.J., Expression of tyrosine hydroxylase in lymphocytes and effect of endogenous catecholamines on lymphocyte function, Neuroimmunomodulation, 2004, vol. 11, no. 2, pp. 75–83.

    Article  CAS  PubMed  Google Scholar 

  • Sarkisov, D.S. and Rubetskoi, L.S., Puti vosstanovleniya tsirroticheski izmenennoi pecheni (Cirrhotic Liver Recovery Pathways), Moscow: Meditsina, 1965.

    Google Scholar 

  • Schaue, D. and McBride, W.H., T lymphocytes and normal tissue responses to radiation, Front. Oncol., 2012, no. 2, p. 119.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp, B.M., Li, M.D., Matta, S.G., et al., Expression of delta opioid receptors and transcripts by splenic T cells, Ann. N.Y. Acad. Sci., 2000, no. 917, pp. 764–770.

    Article  CAS  PubMed  Google Scholar 

  • Sharp, B.M., McAllen, K., Gekker, G., et al., Immunofluorescence detection of delta opioid receptors (DOR) on human peripheral blood CD4+ T cells and DORdependent suppression of HIV-1 expression, J. Immunol., 2001, vol. 167, no. 2, pp. 1097–1102.

    Article  CAS  PubMed  Google Scholar 

  • Sharp, B.M., Multiple opioid receptors on immune cells modulate intracellular signaling, Brain Behav. Immun., 2006, vol. 20, no. 1, pp. 9–14.

    Article  CAS  PubMed  Google Scholar 

  • Shatinina, N.N., Homeostasis of peripheral blood lymphocytes under radiation impact on the human body, Extended Abstract of Doctoral (Med.) Dissertation, St. Petersburg, 1998.

    Google Scholar 

  • Solopaev, B.P., Regeneratsiya normal’noi i patologicheski izmenennoi pecheni (Regeneration of Normal and Pathologically Changed Liver), Gorky: Volgo-Vyat. Kn. Izd., 1980.

    Google Scholar 

  • Solov’ev, A.S., Shchebnikova, N.E., and Grishanov, D.Yu., Investigation of the thermal stability of lymphocytes of animals adapted to high temperatures, Vestn. Smolensk. Gos. Med. Akad., 2011, no. 3, pp. 23–25.

    Google Scholar 

  • Stevenson, T.J., Onishi, K.G., Bradley, S.P., et al., Cellautonomous iodothyronine deiodinase expression mediates seasonal plasticity in immune function, Brain Behav. Immun., 2014, vol. 36, pp. 61–70.

    Article  CAS  PubMed  Google Scholar 

  • Studitskii, A.N., Controversial issues of the modern doctrine of regeneration, Zh. Obshch. Biol., 1963, vol. 24, no. 4, pp. 241–260.

    CAS  PubMed  Google Scholar 

  • Studitskii, A.N. and Popova, M.F., Biological protection of musculoskeletal tissue against ionizing radiation injuries, Dokl. Akad. Nauk SSSR, 1962, vol. 145, no. 1, pp. 198–201.

    Google Scholar 

  • Tamosiuniene, R. and Nicolls, M.R., Regulatory T cells and pulmonary hypertension, Trends Cardiovasc. Med., 2011, vol. 21, no. 6, pp. 166–171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamosiuniene, R., Tian, W., Dhillon, G., et al., Regulatory T cells limit vascular endothelial injury and prevent pulmonary hypertension, Circ. Res., 2011, vol. 109, no. 8, pp. 867–879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarnuev, V.A. and Namsaraeva, G.T., Krovopuskanie v traditsionnoi vostochnoi meditsine (Bloodletting in Traditional Oriental Medicine), Ulan-Ude: Buryatskoe knizhnoe izdatel’stvo, 1995.

    Google Scholar 

  • Tishevskaya, N.V., Gevorkyan, N.M., and Kozlova, N.I., The role of T cells in the hormonal regulation of morphogenetic processes, Usp. Sovrem. Biol., 2015a, vol. 2, pp. 189–202.

    Google Scholar 

  • Tishevskaya, N.V., Gevorkyan, N.M., and Kozlova, N.I., T cells and tissue growth factors, Ross. Fiziol. Zh. im. I.M. Sechenova, 2015b, vol. 101, no. 8, pp. 865–884.

    CAS  PubMed  Google Scholar 

  • Uzunova, A.N. and Romanenko, E.S., Features of the immunological status of children with perinatal lesion of the central nervous system, Vestn. Ural. Med. Akad. Nauki, 2011, no. 2-1 (35), pp. 208–209.

    Google Scholar 

  • Van’ko, L.V., Bogdashin, I.V., and Fuks, B.B., The study of reversible lesion of membranes of normal killer cells in contact with the tumor cell, Byull. Eksp. Biol. Med., 1983, vol. 95, no. 4, pp. 82–84.

    Google Scholar 

  • Voitkevich, A.A., Vosstanovitel’nye protsessy i gormony (Regenerative Processes and Hormones), Leningrad: Meditsina, 1965.

    Google Scholar 

  • Vorontsova, M.A. and Liozner, L.D., Fiziologicheskaya regeneratsiya (Physiological Regeneration), Moscow: Sov. Nauka, 1955.

    Google Scholar 

  • Wang, L., Ge, P., Liu, Y., et al., The effect of peripheral blood lymphocyte cell cultured and induced in vitro on the facial nerve regeneration, Lin Chuang Er Bi Yan Hou Ke Za Zhi, 2006, vol. 20, no. 16, pp. 755–757.

    PubMed  Google Scholar 

  • Weigent, D.A., Riley, J.E., Galin, F.S., et al., Detection of growth hormone and growth hormone-releasing hormone- related messenger RNA in rat leukocytes by the polymerase chain reaction, Proc. Soc. Exp. Biol. Med., 1991, vol. 198, no. 1, pp. 643–648.

    Article  CAS  PubMed  Google Scholar 

  • Weigent, D.A., High molecular weight isoforms of growth hormone in cells of the immune system, Cell Immunol., 2011, vol. 71, no. 1, pp. 44–52.

    Article  Google Scholar 

  • Weigent, D.A., Expression of lymphocyte-derived growth hormone (GH) and GH-releasing hormone receptors in aging rats, Cell Immunol., 2013, vol. 282, no. 2, pp. 71–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yashina, I.N., Changes in the size and mitotic activity of the regenerating liver cells of mice after administration of deoxyribonucleotides and DNA isolated from rabbit regenerating liver, Byull. Eksp. Biol. Med., 1967, no. 9, pp. 90–92.

    Google Scholar 

  • Yuldashev, N.M., Nishantaev, M.K., Saidalikhodzhaeva, O.Z., and Zhumanova, N.A., The impact of intensification of free radical lipid peroxidation on the morphogenetic activity of lymphocytes, Fund. Issled., 2011, no. 11-1, pp. 189–193.

    Google Scholar 

  • Yurkova, L.E. and Shutko, A.N., Evaluation of the therapeutic possibilities of system radiation therapy as a component of a combined treatment of advanced ovarian cancer, Vopr. Onkol., 2013, vol. 59, no. 4, pp. 479–482.

    CAS  Google Scholar 

  • Zarek, P.E., Huang, C.T., Lutz, E.R., et al., A2a receptor signaling promotes peripheral tolerance by inducing T-cell anergy and the generation of adaptive regulatory T cells, Blood, 2008, vol. 111, no. 1, pp. 251–259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zelenina, N.V., Goranchuk, V.V., and Andreeva, I.L., Effect of a short-term moderate whole body hyperthermia of healthy humans on their peripheral lymphocytes, Tsitologiya, 2000, no. 2, pp. 166–168.

    Google Scholar 

  • Zhang, L., Belkowski, J.S., Briscoe, T., and Rogers, T.J., Regulation of mu opioid receptor expression in developing T cells, J. Neuroimmune Pharmacol., 2012, vol. 7, no. 4, pp. 835–842.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Tishevskaya.

Additional information

Original Russian Text © N.V. Tishevskaya, A.G. Babaeva, N.M. Gevorkyan, 2018, published in Ontogenez, 2018, Vol. 49, No. 1, pp. 54–66.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tishevskaya, N.V., Babaeva, A.G. & Gevorkyan, N.M. Effect of lymphocyte morphogenetic activity on organism reactivity and resistibility. Russ J Dev Biol 49, 48–59 (2018). https://doi.org/10.1134/S106236041801006X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106236041801006X

Keywords

Navigation