Advertisement

Biology Bulletin

, Volume 42, Issue 2, pp 117–123 | Cite as

Cytomorphological and biochemical characteristics of the whitefish, Baikal omul Coregonus migratorius, infected by plerocercoids of Diphyllobothrium dendriticum (Cestoda: Pseudophyllidae)

  • O. E. MazurEmail author
  • L. V. Tolochko
Zoology
  • 49 Downloads

Abstract

The cytomorphological and biochemical composition of the blood has been studied for the deep-dwelling (bottom) morphotype of the Baikal omul infected by plerocercoids of Diphyllobothrium dendriticum, during the fish spawning migration. A decrease in hemoglobin synthesis and an increase in the proliferative activity of erythroid cells have been registered. The changes in the leukocyte population composition, immunoglobulin, and total protein concentrations evidenced a disorder of blood cell proliferation and differentiation and suppression of the immune response in the infected fish. The changes in the humoral and cell factors of homeostasis in Coregonus migratorius infected by D. dendriticum during the spawning period remain within the limits of the adaptive possibilities of the species.

Keywords

Rainbow Trout Biology Bulletin Crucian Carp Infected Fish Paragonimiasis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez-Pellitero, P., Fish immunity and parasite infections: from innate immunity to immunoprophylactic prospects, Vet. Immunol. Immunopathol., 2008, vol. 126, pp. 171–198.CrossRefPubMedGoogle Scholar
  2. Astaf’ev, B.A., Immunopatologicheskie proyavleniya i oslozhneniya gel’mintozov (Immunopathological Manifestations and Complications of Helminthiasis), Moscow: Poligrafist, 1987.Google Scholar
  3. Barton, B.A. and Iwama, G.K., Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids, Ann. Rev. Fish Dis., 1991, no. 1, pp. 3–26.Google Scholar
  4. Barton, B.A., Stress in fish: a diversity of responses with particular references to changes in circulating corticosteroids, Integr. Comp. Biol., 2002, no. 42, pp. 517–525.Google Scholar
  5. Beklemishev, V.N., Terms and concepts required for quantitative study of populations of ectoparasites and nidicoles, in Biotsenologicheskie osnovy sravnitel’noi parazitologii (Biocenological Basics of Comparative Parasitology), Moscow: Nauka, 1970, pp. 143–154.Google Scholar
  6. Berezantsev, Yu.A., Gavrilova, E.P., and Oparin, E.N., Inhibition of the phagocytic and chemotaxic activity of leukocytes by larvae of several species of cestode and nematode, Zh. Evol. Biokhim. Fiziol., 1976, vol. 12, no. 3, pp. 240–244.Google Scholar
  7. Berezantsev, Yu.A., Borshchukov, D.V., Oksov, I.V., et al., Encapsulation of larvae of parasitic nematodes and cestodes in tissues of vertebrates as a form of relationship between parasite and host, Parazitol. Sb. ZIN AN SSSR, 1989, no. 36, pp. 131–160.Google Scholar
  8. Biserova, N.M., Kutyrev, I.A., and Malakhov, V.V., The tapeworm Diphyllobothrium dendriticum (Cestoda) produces prostaglandin E2, a regulator of host immunity, Dokl. Biol. Sci., 2011, vol. 441, pp. 367–369.CrossRefPubMedGoogle Scholar
  9. Burdukovskaya, T.G. and Pronin, N.M., Veslonogie rakoobraznye (Crustacea: Copepoda)—parazity ryb ozera Baikal i ego basseina (Copepods (Crustacea: Copepoda)—Parasites of Fishes of Lake Baikal and Its Basin), Novosibirsk: Nauka, 2013.Google Scholar
  10. Bush, A., Lafferty, K., Lotz, J., and Shostak, A., Parasitology meets ecology on its own terms: Margolis et al. revisited, J. Parasitol., 1997, vol. 83, pp. 575–583.CrossRefPubMedGoogle Scholar
  11. Bykhovskaya-Pavlovskaya, I.E., Parazitologicheskoe issledovanie ryb: Rukovodstvo po izucheniyu (Parasitological Study of Fish: A Study Guide), Leningrad: Nauka, 1985.Google Scholar
  12. Davis, A.K., Maney, D.L., and Maerz, J.C., The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists, Function. Ecol., 2008, vol. 22, no. 5, pp. 760–772.CrossRefGoogle Scholar
  13. Dezfuli, B.S., Pironi, F., Simoni, E., et al., Selected pathological, immunohistochemical and ultrastructural changes associated with an infection by Diphyllobothrium dendriticum (Nitzsch, 1824) (Cestoda) plerocercoids in Coregonus lavaretus (L.) (Coregonidae), J. Fish Dis., 2007, no. 30, pp. 471–482.Google Scholar
  14. Dugarov, Zh.N. and Pronin, N.M., The dynamics of parasite communities in the age series of Baikal cisco, Izv. Akad. Nauk, Ser. Biol., 2013, no. 5, pp. 592–604.Google Scholar
  15. Golovina, N.A. and Trombitskii, I.D., Gematologiya prudovykh ryb (Hematology of Pond Fishes), Chisinau: Shtiintsa, 1989.Google Scholar
  16. Gosteva, L.A., Sergeeva, V.T., and Makarevich, N.I., Lysozyme activity in patients with difilobotriasis, Med. Parazitol. Parazitar. Bolezni, 1991, no. 2, pp. 11–13.Google Scholar
  17. Grushko, M.P., Lozhnichenko, O.V., and Fedorova, N.N., Gemopoez u osetrovykh ryb (Hematopoiesis in Acipenseridae), Astrakhan’: Triada, 2009.Google Scholar
  18. Ivanova, N.T., Atlas kletok krovi ryb (sravnitel’naya morfologiya i klassifikatsiya formennykh elementov krovi ryb) (Atlas of Blood Cells of Fish (Comparative Morphology and Classification of Fish Blood Cells)), Moscow: Leg. Pishch. Prom., 1983.Google Scholar
  19. Izvekova, G.I. and Solov’ev, M.M., Activity of digestive hydrolases of fish infected with cestodes, Usp. Sovrem. Biol., 2012, vol. 132, no. 6, pp. 601–610.Google Scholar
  20. Khurshid, I. and Ahmad, F., Helminthology and haematological parameters of S. labiatus in Shallabugh Wetland and River Sindh, Int. J. Sci. Eng. Res., 2013, vol. 4, no. 5, pp. 1993–2001.Google Scholar
  21. Kortet, R., Taskinen, J., Sinisalo, T., et al., Breedingrelated seasonal changes in immunecompetence health state and condition of the cyprinid fish Rutilus rutilus L., Biol. J. Linn. Soc., 2003, vol. 78, pp. 117–127.CrossRefGoogle Scholar
  22. Kurovskaya, L.Ya., Conjugation of digestive processes in the Bothriocephalus acheilognathi-carp system, Parazitologiya, 1991, vol. 25, no. 5, pp. 441–449.Google Scholar
  23. Kutyrev, I.A., Pronin, N.M., and Dugarov, Zh.N., Composition of leucocytes of the head kidney of the crucian carp (Carassius auratus gibelio, Cypriniformes: Cyprinidae) as affected by invasion of cestode Digramma interrupta (Cestoda; Pseudophyllidea), Biol. Bull. (Moscow), 2011, vol. 38, no. 6, pp. 653–658.CrossRefGoogle Scholar
  24. Kutyrev, I.A., Biserova, N.M., Sharsak, I.P., et al., Prostaglandin E2 as a potential immunomodulator of gull tapeworm, Byul. VSNTs SO RAMN, 2012, no. 5(87), pp. 245–249.Google Scholar
  25. Larson, D., Hobner, M.P., Torrero, M.N., et al., Chronic helminthes infection reduces basophile responsiveness in an IL-10-dependent manner, J. Immunol., 2012, vol. 1, no. 188 (9), pp. 4188–4199.CrossRefGoogle Scholar
  26. Lebedev, K.A. and Ponyakina I.D. Immunnaya nedostatochnost’ (vyyavlenie i lechenie) (Immune Deficiency (Detection and Treatment)), Moscow: Med. Kniga, 2003.Google Scholar
  27. Lyaiman, Z.M., Parasitic worms of fishes of Lake Baikal, Tr. Baikal. Limnol. Stantsii, 1933, vol. 4, pp. 5–99.Google Scholar
  28. Mazur, O.E., Pronin, N.M., and Tolochko, L.V., Hematological and immunological properties of herring gull (Larus argentatus) nestlings experimentally infected with Diphyllobothrium dendriticum (Cestoda: Pseudophyllidae), Biol. Bull. (Moscow), 2007, vol. 34, no. 4, pp. 346–352.CrossRefGoogle Scholar
  29. Mazur, O.E., Pronin, N.M., Fomina, A.S., and Pronina, S.V., Comparative analysis of hematological, micromorphological, and immunological obligate and nonobligate hosts of the tapeworm Diphillobothrium dendriticum (Cestoda: Pseudophyllidae), Ross. Parazitol. Zh., 2013, no. 1, pp. 54–60.Google Scholar
  30. McBride, J.R., Fagerlund, U.H.M., Dye, H.M., et al., Changes in structure of tissues and plasma cortisol during the spawning migration of pink salmon, Oncorhynchus gorbuscha (Walbaum), J. Fish. Biol., 1986, vol. 29, no. 2, pp. 153–166.CrossRefGoogle Scholar
  31. McConnachie, S.H., Cook, K.V., Patterson, D.A., et al., Consequences of acute stress and cortisol manipulation on the physiology, behavior and reproductive outcome of female Pacific salmon on spawning grounds, Hormones Behav., 2012, no. 62, pp. 67–76.Google Scholar
  32. Mikryakov, D.V., Effect of some corticosteroid hormones on the structure and function of the immune system of fish, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow: IPEE RAN, 2004.Google Scholar
  33. Mikryakov, V.R., Balabanova, L.V., and Mikryakov, D.V., Effect of cortisone on the morphology and function of the immune system of carp Cyprinus carpio L., Vopr. Rybolovstva, 2006, no. 4 (28), pp. 604–616.Google Scholar
  34. Mikryakov, V.R., Balabanova, L.V., and Mikryakov, D.V., Leukocyte reaction of the sterlet Acipenser ruthenus on hormone-induced stress (effect of cortisone), Vopr. Ikhtiol., 2009, no. 4, pp. 554–557.Google Scholar
  35. Mineev, A.K., Morphological analysis and pathological changes in the structure of blood cells in fishes of the Saratov Reservoir, Vopr. Ikhtiol., 2007, no. 1, pp. 93–100.Google Scholar
  36. Moiseenko, T.I., Morphophysiological rearrangements in fish in response to pollution (in the light of S.S. Shvarts’ theory), Russ. J. Ecol., 2000, vol. 31, no. 6, pp. 429–438.CrossRefGoogle Scholar
  37. Nacheva, L.V. and Vorob’eva, E.I., Morfofunktsional’nye osobennosti vzaimootnoshenii parazita i khozyaina pri paragonimoze (Morphological and Functional Features of Host-Parasite Relationships in Paragonimiasis), Kemerovo: KGMA, 1996.Google Scholar
  38. Pavlov, D.S., Nemova, D.S., Kirillova, E.A., et al., Lipid content in the young-of-the-year sockeye salmon Oncorhynchus nerka during feeding migration (the Ozernaya River, Western Kamchatka), Dokl. Biol. Sci., 2012, vol. 445, pp. 235–238.CrossRefPubMedGoogle Scholar
  39. Pravdin, I.F., Rukovodstvo po izucheniyu ryb (Fish Study Guide), Moscow: Pishch. Prom., 1966.Google Scholar
  40. Pronin, N.M., Parasites and diseases of cisco, in Ekologiya, bolezni i razvedenie baikal’skogo omulya (Ecology, Diseases, and Breeding of Baikal Cisco), Novosibirsk: Nauka, 1981, pp. 114–159.Google Scholar
  41. Pronin, N.M., Ecology of parasites of aquatic animals of Lake Baikal basin and the structure of parasitic systems, Doctoral (Biol.) Dissertation in the Form of Scientific Report, Ulan-Ude: BNTs SO RAN, 2004.Google Scholar
  42. Pronin, N.M., Ryzhova, L.N., Tugarina, P.Ya., et al., Morphological and parasitological studies of Hovsgol cisco (Lake Hovsgol, Mongolia), in Zooparazitologiya basseina ozera Baikal (Zooparazitology of Lake Baikal Basin), UlanUde: Izd. Buryat. Fil. SO AN SSSR, 1979, pp. 106–121.Google Scholar
  43. Pronin, N.M., Matveev, A.N., Samusenok, V.P., et al., Ryby ozera Baikal i ego basseina (Fishes of Lake Baikal and Its Basin), Ulan-Ude: Izd. BNTs SO RAN, 2007.Google Scholar
  44. Pronina, S.V. and Pronin, N.M., Vzaimootnosheniya v sistemakh gel’minty-ryby (na tkanevom, organnom i organizmennom urovnyakh) (Relationships in the Worms-Fish System (on the Tissue, Organ, and Organism Levels)), Moscow: Nauka, 1988.Google Scholar
  45. Pronina, S.V., Mazur, O.E., Pronin, N.M., et al., Morphological and functional characteristics of the thymus and immunological parameters of the Syrian hamster in experimental infection with the cestode Diphyllobothrium dendriticum (Pseudophyllidea: Diphyllobothriidae), Parazitologiya, 2010, vol. 44, no. 2, pp. 135–145.Google Scholar
  46. Rahkonen, R. and Koski, P., Occurrence of cestode larvae in brown trout after stocking in a large regulated lake in northern Finland, Dis. Aquat. Org., 1997, vol. 31, pp. 55–63.CrossRefGoogle Scholar
  47. Rodger, H.D., Diphyllobothrium sp. infections in freshwater-reared Atlantic salmon (Salmo salar L.), Aquaculture, 1991, vol. 95, pp. 7–14.CrossRefGoogle Scholar
  48. Roumier, T., Capron, M., Dombrowicz, D., et al., Pathogen induced regulatory cell populations preventing allergy through the Th1/Th2 paradigm point of view, Immunol. Res., 2008, vol. 40, pp. 1–17.CrossRefPubMedGoogle Scholar
  49. Rusinek, O.T., Parazity ryb ozera Baikal (fauna, soobshchestva, zoogeografiya, istoriya formirovaniya) (Parasites of Fishes of Lake Baikal (Fauna, Communities, Zoogeography, and History of Formation)), Moscow: KMK, 2007.Google Scholar
  50. Santoro, M., Mattiucci, S., Work, T., et al., Parasitic infection by larval helminthes in Antarctic fishes: pathological changes and impact on the host body condition index, Dis. Aquat. Org., 2013, vol. 105, no. 2, pp. 139–148.CrossRefPubMedGoogle Scholar
  51. Sbornik instruktsii po bor’be s boleznyami ryb (Collection of Instructions for Control of Fish Diseases), Yaremenko, N.A., Ed., Moscow: Agrovestnik, 1999.Google Scholar
  52. Sergeeva, E.G. and Beer, S.A., Factors of the host-parasite specificity, in Aktual’nye problemy obshchei parazitologii: Tr. Inst. Parazitologii (Actual Problems of General Parasitology: Transactions of the Institute of Parasitology), Moscow: Nauka, 2000, vol. 17, pp. 205–217.Google Scholar
  53. Sharp, G.J.E., Pike, A.W., and Secombes, C.J., The immune response of wild rainbow trout, Salmo gairdneri Richardson, to naturally acquired plerocercoid infections of Diphyllobothrium dendriticum (Nitzsch, 1824) and D. ditremum (Creplin, 1925), J. Fish. Biol., 1989, vol. 35, pp. 781–794.CrossRefGoogle Scholar
  54. Sharp, G.J.E., Pike, A.W., and Secombes, C.J., Leukocyte migration in rainbow trout (Oncorhynchus mykiss, Walbaum, 1972) optimization of migration conditions and responses to host and pathogen (Diphyllobothrium dendriticum (Nitzsch, 1824) derived chemoattractants, Dev. Comp. Immunol., 1991, no. 15, pp. 295–305.Google Scholar
  55. Sharp, G.J.E., Pike, A.W., and Secombes, C.J., Sequential development of the immune response in rainbow trout (Oncorhynchus mykiss, Walbaum, 1972) to experimental plerocercoid infections of Diphyllobothrium dendriticum (Nitzsch, 1824), Parasitology, 1992, no. 104, pp. 169–178.Google Scholar
  56. Shenkin, A., Cedarblad, G., Elia, M., et al., Laboratory assessment of protein-energy status, Clin. Chim. Acta, 1995, vol. 253, pp. 5–59.CrossRefGoogle Scholar
  57. Shoemaker, C.A., Martins, M.L., Xu De-Hai, et al., Effect of Ichthyophthirius multifiliis parasitism on the survival, hematology and bacterial load in channel catfish previously exposed to Edwardsiella ictaluri, Parasitol. Res., 2012, vol. 111, pp. 2223–2228.CrossRefPubMedGoogle Scholar
  58. Silkina, N.I., Mikryakov, V.R., and Mikryakov, D.V., The nature of changes of some immunophysiological characteristics in bream (Abramis brama) infected with plerocercoids (Ligula intestinalis) at various stages of parasite development, Biol. Bull. (Moscow), 2012, vol. 39, no. 5, pp. 485–490.CrossRefGoogle Scholar
  59. Sitja-Bobadilla, A., Living off a fish: a tradeoff between parasites and the immune system, Fish Shellfish Immunol., 2008, no. 25, pp. 358–372.Google Scholar
  60. Skarstein, F., Folstad, I., and Liljedal, S., Whether to reproduce or not: immune suppression and costs of parasites during reproduction in the Arctic char, Can. J. Zool., 2001, no. 79 (2), pp. 271–278.Google Scholar
  61. Skorobrekhova, E.M. and Nikishin, V.P., Dependence of the structure of the capsule surrounding the acanthocephalan Corynosoma strumosum on the species of its natural paratenic host, Biol. Bull. (Moscow), 2013, vol. 41, no. 4, pp. 333–339.CrossRefGoogle Scholar
  62. Sopinska, A., Effect of physiological factors, stress and diseases on hematological parameters of carps, with a particular reference to leukocyte pattern. II. Hematological results of stress in carp, Acta Ichthyol. Piscator., 1984, vol. 14, no. 1, pp. 121–139.Google Scholar
  63. Tavares-Dias, M., A morphological and cytochemical study of erythrocytes, thrombocytes and leukocytes in four freshwater teleosts, J. Fish. Biol., 2006, vol. 68, pp. 1822–1833.CrossRefGoogle Scholar
  64. Torres, P., Lopez, J.C., Cubillos, V., et al., Visceral diphyllobothriosis in a cultured rainbow trout, Oncorhynchus mykiss (Walbaum), in Chile, J. Fish Dis., 2002, no. 25, pp. 375–379.Google Scholar
  65. Yakhnenko, V.M., Morfologicheskaya kharakteristika krovi ryb ozera Baikal (ekologo-evolyutsionnye aspekty) (Morphological Characteristics of Blood of Fishes of Lake Baikal (Ecological and Evolutionary Aspects)), Novosibirsk: Nauka, 1984.Google Scholar
  66. Yakhnenko, V.M. and Klimenkov, I.V., Specific features of blood cell composition and structure in fishes from the pelagial and coastal zones of Lake Baikal, Biol. Bull. (Moscow), 2009, vol. 36, no. 1, pp. 37–45.CrossRefGoogle Scholar
  67. Zaika, V.E., Parazitofauna ryb ozera Baikal (Parasitofauna of Fishes of Lake Baikal), Moscow: Nauka, 1965.Google Scholar
  68. Zhiteneva, L.D., Poltavtseva, T.G., and Rudnitskaya, O.A., Atlas normal’nykh i patologicheski izmenennykh kletok krovi ryb (Atlas of Normal and Abnormal Cells of Fish Blood), Rostov-on-Don: Rostizdat, 1989.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  1. 1.Institute of General and Experimental Biology, Siberian BranchRussian Academy of SciencesUlan-Ude, Republic of BuryatiaRussia

Personalised recommendations