Skip to main content
Log in

Protective action of glutamate antibodies on increased expression of genes of programmed death of rat brain cells induced by injection of a β-amyloid fragment (25–35)

  • Genetics
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Glutamate antibodies intranasally administered to Wistar rats at a dose of 300 μg/kg reduced the elevated levels of expression of Aifml, Casp3, and Parp1 genes in the prefrontal cortex and Aifml and Casp3 genes in the hippocampus on the third day after administration of the β-amyloid fragment Aβ25–35 into the Meynert nuclei of the brain. Changes in Aifm1, Bax, Casp3, and Parp1 gene expression were not found in the hypothalamus, and changes in Bax gene expression were not found in the brain structures studied. The discovered features of gene expression in the prefrontal cortex and hippocampus are considered in terms of development of various cell-death programs, which are modulated by glutamate antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acute Neuronal Injury: The Role of Excitotoxic Programmed Cell Death Mechanisms, Fujikawa, D.G., Ed., New York: Springer, 2010.

    Google Scholar 

  • Ayala-Grosso, C., Ng, G., Roy, S., and Robertson, G.S., Caspase-cleaved amyloid precursor protein in Alzheimer’s disease, Brain Pathol., 2002, vol. 12, no. 4, pp. 430–441.

    Article  PubMed  CAS  Google Scholar 

  • Benilova, I., Karran, E., and De Strooper, B., The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes, Nat. Neurosci., 2012, vol. 15, no. 3, pp. 349–357.

    Article  PubMed  CAS  Google Scholar 

  • Cheung, E.C., Melanson-Drapeau, L., Cregan, S.P., et al., Apoptosis-inducing factor is a key factor in neuronal cell death propagated by BAX-dependent and BAX-independent mechanisms, J. Neurosci., 2005, vol. 25, no. 6, pp. 1324–1334.

    Article  PubMed  CAS  Google Scholar 

  • Cregan, S.P., Dawson, V.L., and Slack, R.S., Role of AIF in caspase-dependent and caspase-independent cell death, Oncogene, 2004, vol. 23, no. 16, pp. 2785–2796.

    Article  PubMed  CAS  Google Scholar 

  • Evseev, V.A., Antitela k neiromediatoram v mekhanizmakh neiroimmunopatologii (Antibodies to the Neurotransmitters in the Mechanisms of Neuroimmunopathology), Moscow: Izd. Ross. Akad. Med. Nauk, 2007.

    Google Scholar 

  • Evseev, V.A., Vetrile, L.A., Smirnova, V.S., et al., Autoantibodies against glutamate, gamma-aminobutyric acid, and norepinephrine in mechanisms of neuropathic pain syndrome, Bull. Exp. Biol. Med., 2008, vol. 145, no. 5, pp. 584–587.

    Article  PubMed  CAS  Google Scholar 

  • Evseev, V.A., Vetrile, L.A., and Zakharova, I.A., Involvement of autoantibodies to neurotransmitters in mechanisms of stress reaction in rats, Bull. Exp. Biol. Med., 2010, vol. 149, no. 5, pp. 687–690.

    Article  CAS  Google Scholar 

  • Giovannelli, L., Casamenti, F., Scali, C., et al., Differential effects of amyloid peptides beta-(1–40) and beta-(25–35) injections into the rat nucleus basalis, Neuroscience, 1995, vol. 66, no. 4, pp. 781–792.

    Article  PubMed  CAS  Google Scholar 

  • Gorbatov, V.Yu., Trekova, N.A., Fomina, V.G., and Davydova, T.V., Antiamnestic effects of antibodies to glutamate in experimental Alzheimer’s disease, Bull. Exp. Biol. Med., 2010, vol. 150, no. 7, pp. 23–25.

    Article  PubMed  CAS  Google Scholar 

  • Gritti, I., Mainville, L., Mancia, M., and Jones, B.E., GABAergic and other noncholinergic basal forebrain neurons, together with cholinergic neurons, project to the mesocortex and isocortex in the rat, J. Comp. Neurol., 1997, vol. 383, no. 2, pp. 163–177.

    Article  PubMed  CAS  Google Scholar 

  • Gruden, M.A., Storozheva, Z.I., Sewell, R.D.E., et al., Distinct functional brain regional integration of Casp3, Ascl1 and S100a6 gene expression in spatial memory, Behav. Brain Res., 2013, vol. 252, pp. 230–238.

    Article  PubMed  CAS  Google Scholar 

  • Gulyaeva, N.V., “Apoptotic” mechanisms in normal brain plasticity: caspase-3 and long-term potentiation, Zh. Vyssh. Nervn. Deyat., 2004, vol. 54, no. 4, pp. 437–447.

    Google Scholar 

  • Hardy, J. and Higgins, G.A., Alzheimer’s disease: the amyloid cascade hypothesis, Science, 1992, vol. 256, no. 5054, pp. 184–185.

    Article  PubMed  CAS  Google Scholar 

  • Harkany, T., O’Mahony, S., Kelly, J.P., et al., Beta-amyloid(Phe(SO3H)24)25–35 in rat nucleus basalis induces behavioral dysfunctions, impairs learning and memory and disrupts cortical cholinergic innervation, Behav. Brain. Res., 1998, vol. 90, no. 2, pp. 133–145.

    Article  PubMed  CAS  Google Scholar 

  • Harkany, T., Abrahám, I., Timmerman, W., et al., Betaamyloid neurotoxicity is mediated by a glutamate-triggered excitotoxic cascade in rat nucleus basalis, Eur. J. Neurosci., 2000, vol. 12, no. 8, pp. 2735–2745.

    Article  PubMed  CAS  Google Scholar 

  • Jellinger, K.A. and Stadelmann, C., Problems of cell death in neurodegeneration and Alzheimer’s disease, J. Alzheimer’s Dis., 2001, vol. 3, no. 1, pp. 31–40.

    CAS  Google Scholar 

  • Jimenez, S., Baglietto-Vargas, D., Caballero, C., et al., Inflammatory response in the hippocampus of PS-1M146L/APP751SL mouse model of Alzheimer’s disease: age-dependent switch in the microglial phenotype from alternative to classic, J. Neurosci., 2008, vol. 28, no. 45, pp. 11650–11661.

    Article  PubMed  CAS  Google Scholar 

  • Kauppinen, T.M., Suh, S.W., Higashi, Y., et al., Poly(ADP-ribose)polymerase-1 modulates microglial responses to amyloid β, J. Neuroinflammat., 2011, vol. 8, p. 152. doi: 10.1186/1742-2094-8-152

    Article  CAS  Google Scholar 

  • Kermer, P., Liman, J., Weishaupt, J.H., and Bähr, M., Neuronal apoptosis in neurodegenerative disease: from basic research to clinical application, Neurodegener. Dis., 2004, vol. 1, no. 1, pp. 9–19.

    Article  PubMed  Google Scholar 

  • Kolobov, V.V., Fomina, V.G., and Davydova, T.V., Antibodies to glutamate reduce the neurotoxic effects of Aβ25–35 in prefrontal cortex cell transcriptome, Dokl. Akad. Nauk, 2012a, vol. 447, no. 3, pp. 277–279.

    CAS  Google Scholar 

  • Kolobov, V.V., Davydova, T.V., Zakharova, I.A., et al., Glutamate antibodies repress expression of Dffb gene in brain of rats in experimental Alzheimer’s disease, Mol. Biol. (Moscow), 2012b, vol. 46, no. 5, pp. 678–686.

    Article  CAS  Google Scholar 

  • Kolobov, V.V., Zakharova, I.A., Fomina, V.G., et al., Effect of antibodies to glutamate on caspase-3 activity in brain structures of rats with experimental Alzheimer’s disease, Bull. Exp. Biol. Med., 2013a, vol. 154, no. 10, pp. 425–427.

    Article  PubMed  CAS  Google Scholar 

  • Kolobov, V.V., Fomina, V.G., Gorbatov, V.Yu., and Davydova, T.V., Comparison of the effects of glutamate antibodies on neuronal caspase-3 activity and memory disorders in rats caused by the administration of Aβ25–35 into the Meynert nucleus, Patol. Fiziol. Eksp. Ter., 2013b, no. 1, pp. 27–32.

    Google Scholar 

  • Krantic, S., Mechawar, N., Reix, S., and Quirion, R., Molecular basis of programmed cell death involved in neurodegeneration, Trends Neurosci., 2005, vol. 28, no. 12, pp. 670–676.

    Article  PubMed  CAS  Google Scholar 

  • Kubo, T., Nishimura, S., Kumagae, Y., and Kaneko, I., In vivo conversion of racemized beta-amyloid ([D-Ser26]Aβ1–40) to truncated and toxic fragments ([D-Ser26]Aβ25–35/40) and fragment presence in the brains of Alzheimer’s patients, J. Neurosci. Res., 2002, vol. 70, no. 3, pp. 474–483.

    Article  PubMed  CAS  Google Scholar 

  • Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔC(T) method, Methods, 2001, vol. 25, no. 4, pp. 402–408.

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo, H.K. and Susin, S.A., Therapeutic potential of AIF-mediated caspase-independent programmed cell death, Drug Resist. Updat., 2007, vol. 10, no. 6, pp. 235–255.

    Article  PubMed  CAS  Google Scholar 

  • Miller, T.M., Moulder, K.L., Knudson, C.M., et al., BAX deletion further orders the cell death pathway in cerebellar granule cells and suggests a caspase-independent pathway to cell death, J. Cell Biol., 1997, vol. 139, no. 1, pp. 205–217.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Parson, C.G., Stöffler, A., and Danysz, W., Memantine: a NMDA receptor antagonist that improves memory by restoration of homeostasis in the glutamatergic system—too little activation is bad, too much is even more, Neuropharmacology, 2007, vol. 53, no. 6, pp. 699–723.

    Article  CAS  Google Scholar 

  • Paxinos, G. and Watson, C., The Rat Brain in Stereotaxic Coordinates, Amsterdam: Elsevier Acad. Press, 2007.

    Google Scholar 

  • Pike, C.J., Walencewicz-Wasserman, A.J., Kosmoski, J., et al., Structure-activity analyses of beta-amyloid peptides: contributions of the beta 25–35 region to aggregation and neurotoxicity, J. Neurochem., 1995, vol. 64, no. 1, pp. 253–265.

    Article  PubMed  CAS  Google Scholar 

  • Reix, S., Mechawar, N., Susin, S.A., et al., Expression of cortical and hippocampal apoptosis-inducing factor (AIF) in aging and in Alzheimer’s disease, Neurobiol. Aging, 2007, vol. 28, no. 3, pp. 351–356.

    Article  PubMed  CAS  Google Scholar 

  • Revett, T.J., Baker, G.B., Jhamandas, J., and Kar, S., Glutamate system, amyloid β peptides and tau protein: functional interrelationships and relevance to Alzheimer’s disease pathology, J. Psychiatry Neurosci., 2013, vol. 38, no. 3, pp. 6–23.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sorokina, S.Yu., Kuptsov, V.N., Urban, Yu.N., et al., Data-bases as instruments for analysis of large-scale data sets of interactions between molecular biological objects, Biol. Bull. (Moscow), 2013, vol. 40, no. 3, pp. 233–242.

    Article  CAS  Google Scholar 

  • Stepanichev, M.Yu., Zdobnova, I.M., Zarubenko, I.I., et al., Amyloid-beta-(25–35)-induced memory impairments correlate with cell loss in rat hippocampus, Physiol. Behav., 2004, vol. 80, no. 5, pp. 647–655.

    Article  PubMed  CAS  Google Scholar 

  • Tang, Y., Scott, D.A., Das, U., et al., Early and selective impairments in axonal transport kinetics of synaptic cargoes induced by soluble amyloid β-protein oligomers, Traffic, 2012, vol. 13, no. 5, pp. 681–693.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Walsh, D.M., Klyubin, I., Fadeeva, J.V., et al., Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo, Nature, 2002, vol. 416, no. 6880, pp. 535–539.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, D.M. and Selkoe, D.J., Aβ oligomers—a decade of discovery, J. Neurochem., 2007, no. 5, pp. 1172–1184.

    Google Scholar 

  • Wang, Y., Kim, N.S., Li, X., et al., Calpain activation is not required for AIF translocation in parp-1-dependent cell death (parthanatos), J. Neurochem., 2009, vol. 110, no. 2, pp. 687–696.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yu, S.W., Andrabi, S.A., Wang, H., et al., Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death, Proc. Natl. Acad. Sci. USA, 2006, vol. 103, no. 48, pp. 18314–18319.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yuan, J., Lipinski, M., and Degterev, A., Diversity in the mechanisms of neuronal cell death, Neuron, 2003, vol. 40, no. 2, pp. 401–413.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, X., Chen, J., Graham, S.H., et al., Intranuclear localization of apoptosis-inducing factor (AIF) and large scale DNA fragmentation after traumatic brain injury in rats and in neuronal cultures exposed to peroxynitrite, J. Neurochem., 2002, vol. 82, no. 1, pp. 181–191.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kolobov.

Additional information

Original Russian Text © V.V. Kolobov, T.V. Davydova, V.G. Fomina, 2014, published in Izvestiya Akademii Nauk, Seriya Biologicheskaya, 2014, No. 2, pp. 133–141.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolobov, V.V., Davydova, T.V. & Fomina, V.G. Protective action of glutamate antibodies on increased expression of genes of programmed death of rat brain cells induced by injection of a β-amyloid fragment (25–35). Biol Bull Russ Acad Sci 41, 118–125 (2014). https://doi.org/10.1134/S1062359014020034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359014020034

Keywords

Navigation