Skip to main content
Log in

Evidence for evolutionary changes in ontogeny: Paleontological, comparative-morphological, and molecular aspects

  • Developmental Biology
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

It has been noted that the integration of modern data of paleontology, comparative morphology, developmental biology, and molecular genetics forms the basis for understanding the mechanisms of evolutionary transformations of ontogeny. Paleontological and morphological evidence of the evolutionary changes in ontogeny are considered based on the data of cell and molecular biology and developmental genetics. It is shown that reorganizations of gene regulatory cascades (mainly Hox genes) play a key role in the evolution of the axial organization of animals and modifications of the limb structure of metazoans, whereas the formation of new types of structures was apparently determined by the emergence of new populations of stem cells in embryogenesis (for example, neural crest cells in the evolution of vertebrates).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aboobaker, A. and Blaxter, M., The nematode story: Hox gene loss and rapid evolution, in Hox Genes: Studies from the 20th to the 21st Century, Deutsch, J.S., Ed., Paris: Springer Sci.; Business Media, 2010, pp. 101–110.

    Chapter  Google Scholar 

  • Abzhanov, A. and Tabin, C.J., Shh and Fgf8 act synergistically to drive cartilage outgrowth during cranial development, Dev. Biol., 2004, vol. 273, pp. 134–148.

    Article  PubMed  CAS  Google Scholar 

  • Abzhanov, A., Protas, M., Grant, B.R., et al., Bmp4 and morphological variation of beaks in Darwin’s finches, Science, 2004, vol. 305, pp. 1462–1465.

    Article  PubMed  CAS  Google Scholar 

  • Abzhanov, A., Kuo, W.P., Hartmann, C., et al., The calmodulin pathway and evolution of elongated beak morphology in Darwin’s finches, Nature, 2006, vol. 442, pp. 563–567.

    Article  PubMed  CAS  Google Scholar 

  • Ahlberg, P.E., Fossils, developmental patterning and the origin of tetrapods, in The New Panorama of Animal Evolution, Legakis, A., Sfenthourakis, S., Polymeni, R., and Thessalou-Legaki, M., Eds., Sofia: Pensoft Publ., 2003, pp. 45–54.

    Google Scholar 

  • Altenberg, L., Modularity in evolution: some low-level questions, in Modularity: Understanding the Development and Evolution of Natural Complex Systems, Callebaut, W. and Rasskin-Gutman, D., Eds., Cambridge: MIT Press, 2005, pp. 99–128.

    Google Scholar 

  • Ayala, F.J., Vagaries of the Molecular Clock, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 7776–7783.

    Article  PubMed  CAS  Google Scholar 

  • Barskov, I.S., Ectoconchlia ontogeny evolution, in Sovremennye problemy izucheniya golovonogikh mollyuskov. Morfologiya, sistematika, evolyutsiya, ekologiya i biostratigrafiya (Modern Problems of Studying Cephalopods: Morphology, Taxonomy, Evolution, Ecology, and Biostratigraphy), Moscow: PIN RAN, 2012, vol. 3, pp. 29–34.

    Google Scholar 

  • Bengston, S. and Yue, Z., Fossilized metazoan embryos from the earliest Cambrian, Science, 1997, vol. 277, pp. 1645–1648.

    Article  CAS  Google Scholar 

  • Bergström, J., Introduction: the new paleontological panorama, in The New Panorama of Animal Evolution, Legakis, A., Sfenthourakis, S., Polymeni, R., and Thessalou-Legaki, M., Eds., Sofia: Pensoft Publ., 2003, pp. 43–44.

    Google Scholar 

  • Bhullar, B.A.-S., Marugán-Lobán, J., Racimo, F., et al., Birds have paedomorphic dinosaur skulls, Nature, 2012, vol. 487, pp. 223–226.

    Article  PubMed  CAS  Google Scholar 

  • Bogoslovskii, B.I., Devonskie ammonoidei. I. Agoniatity (Devonian Ammonoids. I. Agoniatites), Moscow: Nauka, 1969.

    Google Scholar 

  • Brena, C., Liu, P.Z., Minelli, A., and Kaufman, T.C., Abd-B expression in Porcellio scaber Latreille, 1804 (Isopoda: Crustacea): conserved pattern versus novel roles in development and evolution, Evol. Dev., 2005, vol. 7, pp. 42–50.

    Article  PubMed  CAS  Google Scholar 

  • Cameron, R.A., Peterson, K.J., and Davidson, E.H., Developmental gene regulation and the evolution of large animal body plans, Am. Zool., 1998, vol. 38, pp. 609–620.

    CAS  Google Scholar 

  • Cameron, R.A., Rowen, L., Nesbitt, R., et al., Unusual gene order and organization of the sea urchin Hox claster, J. Exp. Zool. (B), 2006, vol. 306, pp. 45–47.

    Article  Google Scholar 

  • Carpenter, K., Hirsch, K.F., and Horner, J.R., Dinosaur Eggs and Babies, Cambridge: Cambr. Univ. Press, 1996.

    Google Scholar 

  • Carroll, S.B., Homeotic genes and the evolution of arthropods and chordates, Nature, 1995, vol. 76, pp. 479–485.

    Article  Google Scholar 

  • Carroll, S.B., Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution, Cell, 2008, vol. 134, pp. 25–36.

    Article  PubMed  CAS  Google Scholar 

  • Chipman, A., Thoughts and speculations on the ancestral arthropod segmentation, in Evolving Pathways: Key Themes in Evolutionary Developmental Biology, Minelli, A. and Fusco, G., Eds., Cambridge: Cambr. Univ. Press, 2008, pp. 343–358.

    Chapter  Google Scholar 

  • Currie, P.J., Feathered dinosaurs and the origin of birds, in The New Panorama of Animal Evolution, Legakis, A., Sfenthourakis, S., Polymeni, R., and Thessalou-Legaki, M., Eds., Sofia: Pensoft Publ., 2003, pp. 55–60.

    Google Scholar 

  • Davidson, E.H., Peterson, K.J., and Cameron, R.A., Origin of adult bilaterian body plans: evolution of developmental regulatory mechanisms, Science, 1995, vol. 270, pp. 1319–1325.

    Article  PubMed  CAS  Google Scholar 

  • Deutsch, J.S. and Mouchel-Vielh, E., Hox genes and the crustacean body plan, BioEssays, 2003, vol. 25, pp. 878–887.

    Article  PubMed  CAS  Google Scholar 

  • Deutsch, J.S., Homeosis and beyond. What is the function of the Hox genes?, in Hox Genes: Studies from the 20th to the 21st Century, Deutsch, J.S., Ed., Paris: Springer Sci.; Business Media, 2010, pp. 156–165.

    Chapter  Google Scholar 

  • Le Douarin, N.M., Creuzet, S., Couly, G., and Dupin, E., Neural crest cell plasticity and its limits, Development, 2004, vol. 131, pp. 4637–4650.

    Article  PubMed  Google Scholar 

  • Fedonkin, M.A., Two chronicles of life: experience of comparison (paleobiology and genomics about the early stages of biosphere evolution), in Problemy geologii i mineralogii (Problems of Geology and Mineralogy), Pystin, A.M., Eds., Syktyvkar: Geoprint, 2006, pp. 331–350.

    Google Scholar 

  • Ferrier, D.E.K., Evolution of Hox complexes, in Hox Genes: Studies from the 20th to the 21st Century, Deutsch, J.S., Ed., Paris: Springer Sci.; Business Media, 2010, pp. 91–100.

    Chapter  Google Scholar 

  • Gibert, J.-M., Mouchel-Vielh, E., Quinnec, E., and Deutsch, J.S., Barnacle duplicate engrailed genes: divergent expression pattern and evidence for a vestigial abdomen, Evol. Dev., 2000, vol. 2, pp. 194–202.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, S.F., Developmental Biology, Sunderland: Sinauer Ass. Inc., 2006.

    Google Scholar 

  • Gould, S.J., The Structure of Evolutionary Theory, Cambridge: Harvard Univ. Press, 2002, p. 1433.

    Google Scholar 

  • Hall, B.K., Evolutionary Developmental Biology, 2nd ed., Dordrecht: Kluwer Acad. Publ., 1998.

    Google Scholar 

  • Hall, B.K., The neural crest as a fourth germ layer and vertebrates a quadroblastic not triploblastic, Evol. Dev., 2000, vol. 2, pp. 3–5.

    Article  PubMed  CAS  Google Scholar 

  • Hall, B.K., Paleontology and evolutionary developmental biology: a science of the nineteenth and twenty-first centuries, Palaeontology, 2002, vol. 45, pp. 647–669.

    Article  Google Scholar 

  • Hinchcliff, J.R., Evolutionary aspects of the developmental mechanism underlying the patterning of the pentadactyl limb skeleton in birds and other tetrapods, in Trends in Vertebrate Morphology, Splechtna, H. and Hilgers, H., Eds., Vienna: Gustav Fisher Verlag, 1989, pp. 226–229.

    Google Scholar 

  • Hughes, I.C., Haug, J.T., and Waloszek, D., Basal euarthropod development: a fossil-based perspective, in Evolving Pathways: Key Themes in Evolutionary Developmental Biology, Minelli, A. and Fusco, G., Eds., Cambridge: Cambr. Univ. Press, 2008, pp. 281–298.

    Chapter  Google Scholar 

  • Il’ina, T.G., Istoricheskoe razvitie korallov. Podotryad Polycoeliina (Historical Development of Corals. Suborder Polycoeliina), Moscow: Nauka, 1984.

    Google Scholar 

  • Ivanova-Kazas, O.M., Sravnitel’naya embriologiya bespozvonochnykh zhivotnykh. Iglokozhie i polukhordovye (Comparative Embryology of Invertebrates: Echinoderms and Hemichordates), Moscow: Nauka, 1978.

    Google Scholar 

  • Jenner, R., Evo-devo’s identity: from model organisms to developmental types, in Evolving Pathways: Key Themes in Evolutionary Developmental Biology, Minelli, A. and Fusco, G., Eds., Cambridge: Cambr. Univ. Press, 2008, pp. 100–120.

    Chapter  Google Scholar 

  • Karpinskii, A.P., Ob ammoneyakh Artinskogo yarusa i o nekotorykh skhodnykh s nimi kamennougol’nykh formakh (On Artinskian Ammonoids and Some Carbon Forms that Are Similar to Them), St. Petersburg: Tipogr. A. Yakobsona, 1890.

    Google Scholar 

  • Kemp, T.S., Mammal-Like Reptiles and the Origin of Mammals, New York: Acad. Press, 1982.

    Google Scholar 

  • Kuratani, S. and Schilling, T., Head segmentation in vertebrates, Integr. Comp. Biol., 2008, vol. 48, pp. 604–610.

    Article  PubMed  Google Scholar 

  • Kuz’micheva, E.I., Morfologiya skeleta, sistema i evolyutsiya skleraktinii (Skeletal Morphology, the System and the Evolution of Scleractinians), Moscow: Nauka, 2002.

    Google Scholar 

  • Lanfear, R., Are the deuterostome posterior Hox genes a fast-evolving class?, in Hox Genes: Studies from the 20th to the 21st Century, Deutsch, J.S., Ed., Paris: Springer Sci.; Business Media, 2010, pp. 111–122.

    Chapter  Google Scholar 

  • Leonova, T.B., Permian ammonoids: classification and phylogeny, Paleontol. J., 2002, vol. 36, suppl. 1, pp. S1–S114.

    Google Scholar 

  • Leonova, T.B., Ontophylogenetic studies of Paleozoic ammonoides, Biol. Bull., 2012, vol. 39, no. 2, pp. 194–204.

    Article  Google Scholar 

  • Luo, Z.-X., Chen, P., Li, G., and Chen, M., A new eutriconodont mammal and evolutionary development in early mammals, Nature, 2007, vol. 446, pp. 288–293.

    Article  PubMed  CAS  Google Scholar 

  • Malakhov, V.V., The origin of bilaterally symmetrical animals (Bilateria), Zh. Obshch. Biol., 2004, vol. 65, no. 5, pp. 371–388.

    PubMed  CAS  Google Scholar 

  • Minelli, A., The Development of Animal Form. Ontogeny, Morphology, and Evolution, Cambridge: Cambr. Univ. Press, 2003.

    Book  Google Scholar 

  • Minoux, M. and Rijli, F.M., Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development, Development, 2010, vol. 137, pp. 2605–2621.

    Article  PubMed  CAS  Google Scholar 

  • Mooi, R. and David, B., Radial symmetry, the anterior/posterior axis, and echinoderm Hox genes, Ann. Rev. Ecol. Evol. Syst., 2008, vol. 39, pp. 43–62.

    Article  Google Scholar 

  • Müller, G.B., Evo-devo as a discipline, in Evolving Pathways: Key Themes in Evolutionary Developmental Biology, Minelli, A. and Fusco, G., Eds., Cambridge: Cambr. Univ. Press, 2008, pp. 5–30.

    Chapter  Google Scholar 

  • Müller, J., Scheyer, T.M., Head, J.J., et al., Homeotic effects, somitogenesis and the evolution of vertebral numbers in recent and fossil amniotes, Proc. Natl. Acad. Sci. USA, 2010, vol. 107, pp. 2118–2123.

    Article  PubMed  Google Scholar 

  • Northcutt, R.G. and Gans, C., The genesis of neural crest and epidermal placodes: a reinterpretation of vertebrate origins, Q. Rev. Biol., 1983, vol. 58, pp. 1–28.

    Article  PubMed  CAS  Google Scholar 

  • Oster, G.F., Shubin, N., Murray, J.D., and Alberch, P., Evolution and morphogenetic rules: the shape of vertebrate limb in ontogeny and phylogeny, Evolution, 1988, vol. 42, pp. 862–884.

    Article  Google Scholar 

  • Peterson, K.J., Cameron, R.A., and Davidson, E.H., Setaside cells in maximal indirect development: evolutionary and developmental significance, BioEssays, 1997, vol. 19, pp. 623–631.

    Article  PubMed  CAS  Google Scholar 

  • Ponomarenko, A.G., Morphogenesis of insects: a paleontologist’s view, in Tez. konf. “Morfogenez v individual’nom i istoricheskom razvitii” (Proc. Conf. “Morphogenesis in Individual and Historical Development”), Moscow, March 16–18, 2011, pp. 39–40.

    Google Scholar 

  • Raff, R.A., The Shape of Life, Chicago: Univ. Chic. Press, 1996.

    Google Scholar 

  • Raff, R.A. and Raff, E.C., Evolution in the light of embryos: seeking the origins of novelties in ontogeny, in Form and Function in Developmental Evolution, Laubichler, M.D. and Maienschein, J., Eds., Cambridge: Cambr. Univ. Press, 2009, pp. 83–111.

    Chapter  Google Scholar 

  • Raup, D.M., Geometric analysis of shell coiling: general problems, J. Paleontol., 1966, vol. 40, pp. 1178–1190.

    Google Scholar 

  • Rozanov, A.Yu., Zakonomernosti morfologicheskoi evolyutsii arkheotsiat i voprosy yarusnogo raschleneniya nizhnego kembriya (Patterns of Morphological Evolution of Archaeocyatha and Problems of Stage Stratification of the Lower Cambrian), Moscow: Nauka, 1973.

    Google Scholar 

  • Rozhnov, S.V., The process of elevation in the historical and individual development of echinoderms: causes and consequences, in Tez. konf. “Morfogenez v individual’nom i istoricheskom razvitii” (Proc. Conf. “Morphogenesis in Individual and Historical Development”), Moscow, March 16–18, 2011, pp. 44–46.

    Google Scholar 

  • Rozhnov, S.V., Somatic embryogenesis in Bothrophyllum conicum (Rugosa), Paleontol. Zh., 1974, no. 3, pp. 16–22.

    Google Scholar 

  • Rozhnov, S.V., Morphogenesis and evolution of crinoids and other pelmatozoan echinoderms in the early Paleozoic, Paleontol. J., 2002, vol. 36,suppl. 6, pp. S525–S674.

    Google Scholar 

  • Ruzhentsev, V.E., The main types of evolutionary changes in the suture line of Upper Paleozoic ammonites, Tr. Paleontol. Inst. Akad. Nauk SSSR, 1949, vol. 20, pp. 183–198.

    Google Scholar 

  • Ruzhentsev, V.E., Principles of systematics, system and phylogeny of Paleozoic ammonoids, Tr. Paleontol. Inst. Akad. Nauk SSSR, 1960, vol. 83, p. 331.

    Google Scholar 

  • Schierwater, B. and Kamm, K., The early evolution of Hox genes: a battle of belief?, in Hox Genes: Studies from the 20th to the 21st Century, Deutsch, J.S., Ed., Paris: Springer Sci.; Business Media, 2010, pp. 81–90.

    Chapter  Google Scholar 

  • Shishkin, M.A., Evolyutsiya drevnikh amfibii (The Evolution of Ancient Amphibians), Moscow: Nauka, 1987.

    Google Scholar 

  • Shubin, N. and Alberch, P., A morphogenetic approach to the origin and basic organisation of the tetrapod limb, Evol. Biol., 1986, vol. 20, pp. 319–387.

    Article  Google Scholar 

  • Shubin, N., Tabin, C., and Carroll, S., Fossils, genes and the evolution of animal limbs, Nature, 1997, vol. 388, pp. 639–648.

    Article  PubMed  CAS  Google Scholar 

  • Shubin, N.H., Evolutionary cut and paste, Nature, 1998, vol. 394, pp. 12–13.

    Article  CAS  Google Scholar 

  • Smith, M.M. and Hall, B.K., Developmental and evolutionary origins of vertebrate skeletogenic and odontogenic tissues, Biol. Rev. Cambr. Philos. Soc., 1990, vol. 65, pp. 277–374.

    Article  CAS  Google Scholar 

  • Spitz, F., Control of vertebrate Hox clusters by remote and global cis-acting regulatory sequences, in Hox Genes: Studies from the 20th to the 21st Century, Deutsch, J.S., Ed., Paris: Springer Sci.; Business Media, 2010, pp. 63–78.

    Chapter  Google Scholar 

  • Thewissen, J.G.M., Cohn, M.J., Stevens, L.S., et al., Developmental basis for hind-limb loss in dolphins and origin of the cetacean body plan, Proc. Natl. Acad. Sci. USA, 2006, vol. 103, pp. 8414–8418.

    Article  PubMed  CAS  Google Scholar 

  • Trainor, P.A., Melton, K.R., and Manzanares, M., Origins and plasticity of neural crest cells and their roles in jaw and craniofacial evolution, Int. J. Dev. Biol., 2003, vol. 47, pp. 541–553.

    PubMed  Google Scholar 

  • Valentine, J.W., Jablonski, D., and Erwin, D.H., Fossils, molecules and embryos: new perspectives on the cambrian explosion, Development, 1999, vol. 126, pp. 851–859.

    PubMed  CAS  Google Scholar 

  • Varela-Lasheras, I., Bakker, A.J., van der Mije, S.D., et al., Breaking evolutionary and pleiotropic constraints in mammals: on sloths, manatees and homeotic mutations, Evol. Dev., 2011, vol. 2, p. 11.

    Google Scholar 

  • Vorob’eva, E.I., Morfologiya i osobennosti evolyutsii kisteperykh ryb (Morphology and Characteristics of Evolution of Crossopterygii), Moscow: Nauka, 1977.

    Google Scholar 

  • Vorob’eva, E.I. and Hinchliffe, R.J., The problem of transformation of fish fins to tetrapod limbs, Zh. Obshch. Biol., 1991, vol. 52, pp. 192–250.

    Google Scholar 

  • Vorob’eva, E.I., Modern evolutional developmental biology: mechanical and molecular genetic or phenotypic approaches?, Russ. J. Dev. Biol., 2010, vol. 41, no. 5, pp. 283–290.

    Article  Google Scholar 

  • Walossek, D., The Upper Cambrian Rehbachiella and the phylogeny of Branchiopoda and Crustacea, Fossils Strata, 1993, vol. 32, pp. 1–202.

    Google Scholar 

  • Waloszek, D., Cambrian “Orsten”-type preserved arthropods and the phylogeny of Crustacea, in The New Panorama of Animal Evolution, Legakis, A., Sfenthourakis, S., Polymeni, R., and Thessalou-Legaki, M., Eds., Sofia; Moscow: Pensoft Publ., 2003, pp. 69–87.

    Google Scholar 

  • Wimsatt, W.C., Echoes of Haeckel? Reentrenching development in evolution, in From Embryology to Evo-Devo: A History of Developmental Evolution, Laubichler, M.D. and Maienschein, J., Eds., Cambridge: MIT Press, 2007, pp. 309–355.

    Google Scholar 

  • Xiao, S., Zhang, Y., and Knoll, A.H., Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite, Nature, 1998, vol. 391, pp. 553–558.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Isaeva.

Additional information

Original Russian Text © V.V. Isaeva, N.D. Ozernyuk, S.V. Rozhnov, 2013, published in Izvestiya Akademii Nauk, Seriya Biologicheskaya, 2013, No. 3, pp. 273–283.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isaeva, V.V., Ozernyuk, N.D. & Rozhnov, S.V. Evidence for evolutionary changes in ontogeny: Paleontological, comparative-morphological, and molecular aspects. Biol Bull Russ Acad Sci 40, 243–252 (2013). https://doi.org/10.1134/S1062359013030047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359013030047

Keywords

Navigation