Skip to main content
Log in

Stem cell self-renewal: The role of asymmetric division

  • Cell Biology
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Asymmetric division occurs widely in different groups of organisms from single-celled to insects, mammals, and plants. The operation of asymmetrical division may differ widely in different organisms. In multicellular organisms, asymmetrical division is one of the essential features of stem cell biology. The data obtained assume one of the main biological functions of asymmetrical division to be maintenance of cell viability, beginning with stem cells. Cells continuously accumulate toxic inclusions, which are formed by damaged proteins which cannot be degraded by proteasomes. As a result of asymmetric division, these inclusions segregate into one of the daughter cells providing the ability of long-lived proliferation to another cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackermann, M., Stearns, S.C., and Jenal, U., Senescence in a Bacterium with Asymmetric Division, Science, 2003, vol. 300, p. 1920.

    Article  PubMed  CAS  Google Scholar 

  • Aguilaniu, H., Gustafsson, L., Rigoulet, M., and Nystrom, T., Asymmetric Inheritance of Oxidatively Damaged Proteins During Cytokinesis, Science, 2003, vol. 299, pp. 1751–1753.

    Article  PubMed  CAS  Google Scholar 

  • Arrasate, M., Mitra, S., Schweitzer, E.S., et al., Inclusion Body Formation Reduces Levels of Mutant Huntingtin and the Risk of Neuronal Death, Nature, 2004, vol. 431, pp. 805–810.

    Article  PubMed  CAS  Google Scholar 

  • Barrandon, Y. and Green, H., Three Clonal Types of Keratinocyte with Different Capacities for Multiplication, Proc. Natl. Acad. Sci. USA, 1987, vol. 84, pp. 2302–2306.

    Article  PubMed  CAS  Google Scholar 

  • Bucciantini, M., Giannoni, E., Chiti, F., et al., Inherent Toxicity of Aggregates Implies a Common Mechanism for Protein Misfolding Diseases, Nature, 2002, vol. 416, pp. 507–511.

    Article  PubMed  CAS  Google Scholar 

  • Cayouette, M., Whitmore, A.V., Jeffery, G., and Raff, M., Asymmetric Segregation of Numb in Retinal Development and the Influence of the Pigmented Epithelium, J. Neurosci., 2001, vol. 21, pp. 5643–5651.

    PubMed  CAS  Google Scholar 

  • Chenn, A. and McConnell, S.K., Cleavage Orientation and the Asymmetric Inheritance of Notch1 Immunoreactivity in Mammalian Neurogenesis, Cell, 1995, vol. 82, pp. 631–641.

    Article  PubMed  CAS  Google Scholar 

  • Conboy, I.M., Conboy, M.J., and Wagers, A.J., Rejuvenation of Aged Progenitor Cells by Exposure to a Young Systemic Environment, Nature, 2005, vol. 433, pp. 760–764.

    Article  PubMed  CAS  Google Scholar 

  • Fuentealba, L.C., Eivers, E., Geissert, D., et al., Asymmetric Mitosis: Unequal Segregation of Proteins Destined for Degradation, Proc. Nat. Acad. Sci. USA., 2008, vol. 105, pp. 7732–7737.

    Article  PubMed  CAS  Google Scholar 

  • Iscove, N.N. and Nawa, K., Hematopoietic Stem Cells Expand During Serial Transplantation in Vivo without Apparent Exhaustion, Curr. Biol., 1997, vol. 7, pp. 805–808.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, J.A., Illing, M.E., and Kopito, R.R., Cytoplasmic Dynein/Dynastin Mediates the Assembly of Aggresomes, Cell Motil. Cytoskel., 2002, vol. 53, pp. 26–38.

    Article  CAS  Google Scholar 

  • Johnston, J.A., Ward, C.W., and Kopito, R.R., Aggresomes: A Cellular Response to Misfolded Proteins, J. Cell Biol., 1998, vol. 143, pp. 1883–1898.

    Article  PubMed  CAS  Google Scholar 

  • Jones, D.L., Aging and the Germ Line: Where Mortality and Immortality Meet, Stem Cell Rev., 2007, vol. 3, pp. 192–200.

    Article  PubMed  CAS  Google Scholar 

  • Kopito, R.R., Aggresomes, Inclusion Bodies and Protein Aggregation, Trends Cell Biol., 2000, vol. 10, pp. 524–530.

    Article  PubMed  CAS  Google Scholar 

  • Krishnan, K.J., Greaves, L.C., Reeve, A.K., and Turnbull, D., The Ageing Mitochondrial Genome, Nucleic Acids Res., 2007, vol. 36, pp. 7399–7405.

    Article  Google Scholar 

  • Kuang, S. and Kuroda, K., Le Grand F., Rudnicki M.A., Asymmetric Self-Renewal and Commitment of Satellite Stem Cells in Muscle, Cell, 2007, vol. 129, pp. 999–1010.

    Article  PubMed  CAS  Google Scholar 

  • Kusch, J., Liakopoulos, D., and Barral, Y., Spindle Asymmetry: A Compass for the Cell, Trends Cell Biol., 2003, vol. 13, pp. 562–568.

    Article  PubMed  CAS  Google Scholar 

  • Lai, C.-Y., Jaruga, E., Borghouts, C., and Jazwinski, S.M., A Mutation in the ATP2 Gene Abrogates the Age Asymmetry between Mother and Daughter Cells of the Yeast Saccharomyces cerevisiae, Genetics, 2002, vol. 162, pp. 73–87.

    CAS  Google Scholar 

  • Laun, P., Pichova, A., Madeo, F., et al., Aged Mother Cells of Saccharomyces Cerevisiae Show Markers of Oxidative Stress and Apoptosis, Mol. Microbiol., 2001, vol. 39, pp. 1166–1173.

    Article  PubMed  CAS  Google Scholar 

  • Lechler, T. and Fuchs, E., Asymmetric Cell Divisions Promote Stratification and Differentiation of Mammalian Skin, Nature, 2005, vol. 437, pp. 275–280.

    Article  PubMed  CAS  Google Scholar 

  • Lindner, A.B., Madden, R., Demarez, A., et al., Asymmetric Segregation of Protein Aggregates Is Associated with Cellular Aging and Rejuvenation, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, pp. 3076–3081.

    Article  PubMed  CAS  Google Scholar 

  • Macara, I.G. and Mili, S., Polarity and Differential Inheritance-Universal Attributes of Life?, Cell, 2008, vol. 135, pp. 801–812.

    Article  PubMed  CAS  Google Scholar 

  • Moore, D.J., Dawson, V.L., and Dawson, T.M., Role for the Ubiquitin-Proteasome System in Parkinson’s Disease and Other Neurodegenerative Brain Amyloidoses, Mol. Med., 2003, vol. 4, pp. 95–108.

    Google Scholar 

  • Morrison, S.J. and Weissman, I.L., The Long-Term Repopulating Subset of Hematopoietic Stem Cells Is Deterministic and Isolatable by Phenotype, Immunity, 1994, vol. 1, pp. 661–673.

    Article  PubMed  CAS  Google Scholar 

  • Morrison, S.J., Shah, N.M., and Anderson, D.J., Regulatory Mechanisms in Stem Cell Biology, Cell, 1997, vol. 88, pp. 287–298.

    Article  PubMed  CAS  Google Scholar 

  • Nystrom, T., Role of Oxidative Carbonylation in Protein Quality Control and Senescence, EMBO J., 2005, vol. 24, pp. 1311–1317.

    Article  PubMed  Google Scholar 

  • Rando, T.A., Stem Cells, Ageing and the Quest for Immortality, Nature, 2006, vol. 441, pp. 1080–1086.

    Article  PubMed  CAS  Google Scholar 

  • Rebollo, E., Sampaio, P., Januschke, J., et al., Functionally Unequal Centrosomes Drive Spindle Orientation in Asymmetrically Dividing Drosophila Neural Stem Cells, Dev. Cell, 2007, vol. 12, pp. 467–474.

    Article  PubMed  CAS  Google Scholar 

  • Reuter, S.H. and Shapiro, L., Asymmetric Segregation of Heat-Shock Proteins Upon Cell Division in Caulobacter crescentus, J. Mol. Biol., 1987, vol. 194, pp. 653–662.

    Article  PubMed  CAS  Google Scholar 

  • Rossi, D.J., Bryder, D., Seita, J., et al., Deficiencies in DNA Damage Repair Limit the Function of Haematopoietic Stem Cells with Age, Nature, 2007, vol. 447, pp. 725–729.

    Article  PubMed  CAS  Google Scholar 

  • Rujano, M.A., Bosveld, F., Salomons, F.A., et al., Polarised Asymmetric Inheritance of Accumulated Protein Damage in Higher Eukaryotes, PLoS Biol., 2006, vol. 4, no. 12, pp. 2325–2335.

    Article  CAS  Google Scholar 

  • Shen, Q., Zhong, W., Jan, Y.N., and Temple, S., Asymmetric Numb Distribution Is Critical for Asymmetric Cell Division of Mouse Cerebral Cortical Stem Cells and Neuroblasts, Development, 2002, vol. 129, pp. 4843–4853.

    PubMed  CAS  Google Scholar 

  • Shinin, V., Gayraud-Morel, B., Gomés, D., and Tajbakhash, S., Asymmetric Division and Cosegregation of Template DNA Strands in Adult Muscle Satellite Cells, Nature Cell Biol., 2006, vol. 8, pp. 677–687.

    Article  PubMed  CAS  Google Scholar 

  • Sinclair, D.A. and Guarente, L., Extrachromosomal rDNA Circles-ACause of Aging in Yeast, Cell, 1997, vol. 91, pp. 1033–1042.

    Article  PubMed  CAS  Google Scholar 

  • Singhvi, A. and Garriga, G., Asymmetric Divisions, Aggresomes and Apoptosis, Trends Cell Biol., 2009, vol. 19, pp. 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Stern, M.M. and Bickenbach, J.R., Epidermal Stem Cells Are Resistant to Cellular Aging, Aging Cell, 2007, vol. 64, pp. 439–452.

    Article  Google Scholar 

  • Stewart, E.J., Madden, R., Paul, G., and Taddei, F., Aging and Death in An Organism That Reproduces by Morphologically Symmetric Division, PLoS Biol., 2005, vol. 3, no. 2, pp. 295–300.

    Article  CAS  Google Scholar 

  • Stroikin, Y., Dalen, H., Brunk, U.T., and Terman, A., Testing the “Garbage” Accumulation Theory of Ageing: Mitotic Activity Protects Cells from Death Induced by Inhibition of Autophagy, Biogerontology, 2005, vol. 6, pp. 39–47.

    Article  PubMed  CAS  Google Scholar 

  • Sudo, K., Ema, H., Morita, Y., and Nakauchi, H., Age-Associated Characteristics of Murine Hematopoietic Stem Cells, J. Exp. Med., 2000, vol. 192, pp. 1273–1280.

    Article  PubMed  CAS  Google Scholar 

  • Terman, A., Garbage Catastrophe Theory of Aging: Imperfect Removal of Oxidative Damage?, Redox Rep, 2001, vol. 6, pp. 15–26.

    Article  PubMed  CAS  Google Scholar 

  • Van Zant, G., Scott-Micus, K., Thompson, B.P., et al., Stem Cell Quiescence/Activation Is Reversible by Serial Transplantation and Is Independent of Stromal Cell Genotype in Mouse Aggregation Chimeras, Exp. Hematol., 1992, vol. 20, pp. 470–475.

    PubMed  Google Scholar 

  • Yamashita, Y.M., Jones, L., and Fuller, M.T., Orientation of Asymmetric Stem Cell Division by the APC Tumor Suppressor and Centrosome, Science, 2003, vol. 301, pp. 1547–1550.

    Article  PubMed  CAS  Google Scholar 

  • Zeng, X., Human Embryonic Stem Cells: Mechanisms to Escape Replicative Senescence?, Stem Cell Rev., 2007, vol. 3, pp. 270–279.

    Article  PubMed  Google Scholar 

  • Žigman, M., Cayouette, M., Charalambous, C., et al., Mammalian Inscuteable Regulates Spindle Orientation and Cell Fate in the Developing Retina, Neuron, 2005, vol. 48, pp. 539–545.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Terskikh.

Additional information

Original Russian Text © V.V. Terskikh, A.V. Vasil’ev, E.A. Voroteliak, 2009, published in Izvestiya Akademii Nauk, Seriya Biologicheskaya, 2009, No. 5, pp. 509–514.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terskikh, V.V., Vasil’ev, A.V. & Voroteliak, E.A. Stem cell self-renewal: The role of asymmetric division. Biol Bull Russ Acad Sci 36, 425–429 (2009). https://doi.org/10.1134/S106235900905001X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106235900905001X

Keywords

Navigation