Skip to main content
Log in

Aging and the Germ Line: Where Mortality and Immortality Meet

  • Published:
Stem Cell Reviews Aims and scope Submit manuscript

Abstract

Germ cells are highly specialized cells that form gametes, and they are the only cells within an organism that contribute genes to offspring. Germline stem cells (GSCs) sustain gamete production, both oogenesis (egg production) and spermatogenesis (sperm production), in many organisms. Since the genetic information contained within germ cells is passed from generation to generation, the germ line is often referred to as immortal. Therefore, it is possible that germ cells possess unique strategies to protect and transmit the genetic information contained within them indefinitely. However, aging often leads to a dramatic decrease in gamete production and fecundity. In addition, single gene mutations affecting longevity often have a converse effect on reproduction. Recent studies examining age-related changes in GSC number and activity, as well as changes to the stem cell microenvironment, provide insights into the mechanisms underlying the observed reduction in gametogenesis over the lifetime of an organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Partridge, L., Gems, D., & Withers, D. J. (2005). Sex and death: What is the connection? Cell, 120(4), 461–472.

    Article  PubMed  CAS  Google Scholar 

  2. Harshman, L. G., & Zera, A. J. (2007). The cost of reproduction: The devil in the details. Trends in Ecology & Evolution, 22(2), 80–86.

    Article  Google Scholar 

  3. Schofield, R. (1978). The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells, 4(1–2), 7–25.

    PubMed  CAS  Google Scholar 

  4. Xie, T., & Spradling, A. C. (2000). A niche maintaining germ line stem cells in the Drosophila ovary. Science, 290(5490), 328–330.

    Article  PubMed  CAS  Google Scholar 

  5. Kiger, A. A., Jones, D. L., Schulz, C., Rogers, M. B., & Fuller, M. T. (2001). Stem cell self-renewal specified by JAK-STAT activation in response to a support cell cue. Science, 294(5551), 2542–2545.

    Article  PubMed  CAS  Google Scholar 

  6. Tulina, N., & Matunis, E. (2001). Control of stem cell self-renewal in Drosophila spermatogenesis by JAK-STAT signaling. Science, 294(5551), 2546–2549.

    Article  PubMed  CAS  Google Scholar 

  7. Calvi, L. M., Adams, G. B., Weibrecht, K. W., Weber, J. M., Olson, D. P., Knight, M. C., et al. (2003). Osteoblastic cells regulate the haematopoietic stem cell niche. Nature, 425(6960), 841–846.

    Article  PubMed  CAS  Google Scholar 

  8. Zhang, J., Niu, C., Ye, L., Huang, H., Xe, X., Tong, W. G., et al. (2003). Identification of the haematopoietic stem cell niche and control of the niche size. Nature, 425(6960), 836–841.

    Article  PubMed  CAS  Google Scholar 

  9. Tumbar, T., Guasch, G., Greco, V., Blanpain, C., Lowry, W. E., Rendl, M., et al. (2004). Defining the epithelial stem cell niche in skin. Science, 303(5656), 359–363.

    Article  PubMed  CAS  Google Scholar 

  10. Fuchs, E., Tumbar, T., & Guasch, G. (2004). Socializing with the neighbors: Stem cells and their niche. Cell, 116(6), 769–778.

    Article  PubMed  CAS  Google Scholar 

  11. Kimble, J., & Crittenden, S. (2005). Germline proliferation and its control. In WormBook, http://www.wormbook.org.

  12. Crittenden, S. L., Leonhard, K. A., Byrd, D. T., & Kimble, J. (2006). Cellular analyses of the mitotic region in the Caenorhabditis elegans adult germ line. Molecular Biology of the Cell, 17(7), 3051–3061.

    Article  PubMed  CAS  Google Scholar 

  13. Henderson, S. T., Gao, D., Lambie, E. J., & Kimble, J. (1994). lag-2 may encode a signaling ligand for the GLP-1 and LIN-12 receptors of C. elegans. Development, 120(10), 2913–2924.

    PubMed  CAS  Google Scholar 

  14. Tax, F. E., Yeargers, J. J., & Thomas, J. H. (1994). Sequence of C. elegans lag-2 reveals a cell-signalling domain shared with Delta and Serrate of Drosophila. Nature, 368(6467), 150–154.

    Article  PubMed  CAS  Google Scholar 

  15. Austin, J., & Kimble, J. (1987). glp-1 is required in the germ line for regulation of the decision between mitosis and meiosis in C. elegans. Cell, 51(4), 589–599.

    Article  PubMed  CAS  Google Scholar 

  16. Kimble, J. E., & White, J. G. (1981). On the control of germ cell development in Caenorhabditis elegans. Developments in Biologicals, 81(2), 208–219.

    Article  CAS  Google Scholar 

  17. Lambie, E. J., & Kimble, J. (1991). Two homologous regulatory genes, lin-12 and glp-1, have overlapping functions. Development, 112(1), 231–240.

    PubMed  CAS  Google Scholar 

  18. Narbonne, P., & Roy, R. (2006). Inhibition of germline proliferation during C. elegans dauer development requires PTEN, LKB1 and AMPK signalling. Development, 133(4), 611–619.

    Article  PubMed  CAS  Google Scholar 

  19. Kenyon, C. (2005). The plasticity of aging: Insights from long-lived mutants. Cell, 120(4), 449–460.

    Article  PubMed  CAS  Google Scholar 

  20. LaFever, L., & Drummond-Barbosa, D. (2005). Direct control of germline stem cell division and cyst growth by neural insulin in Drosophila. Science, 309(5737), 1071–1073.

    Article  PubMed  CAS  Google Scholar 

  21. Castrillon, D. H., Miao, L., Kollipara, R., Horner, J. W., & DePinho, R. A. (2003). Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science, 301(5630), 215–218.

    Article  PubMed  CAS  Google Scholar 

  22. Liu, L., Rajareddy, S., Reddy, P., Du, C., Jagarlamudi, K., Shen, Y., et al. (2007). Infertility caused by retardation of follicular development in mice with oocyte-specific expression of Foxo3a. Development, 134(1), 199–209.

    Article  PubMed  CAS  Google Scholar 

  23. Gems, D., Sutton, A. J., Sundenmeyer, M. L., Albert, P. S., King, K. V., & Edgley, M. L. (1998). Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans. Genetics, 150(1), 129–155.

    PubMed  CAS  Google Scholar 

  24. Dillin, A., Crawford, D. K., & Kenyon, C. (2002). Timing requirements for insulin/IGF-1 signaling in C. elegans. Science, 298(5594), 830–834.

    Article  PubMed  CAS  Google Scholar 

  25. Hsin, H., & Kenyon, C. (1999). Signals from the reproductive system regulate the lifespan of C. elegans. Nature, 399(6734), 362–366.

    Article  PubMed  CAS  Google Scholar 

  26. Arantes-Oliveira, N., Apfeld, J., Dillin, J., & Kenyon, C. (2002). Regulation of life-span by germ-line stem cells in Caenorhabditis elegans. Science, 295(5554), 502–505.

    Article  PubMed  CAS  Google Scholar 

  27. Yamashita, Y. M., Fuller, M. T., & Jones, D. L. (2005). Signaling in stem cell niches: Lessons from the Drosophila germline. Journal of Cell Science, 118(Pt 4), 665–672.

    Article  PubMed  CAS  Google Scholar 

  28. Harrison, D. A., McCoon, P. E., Binari, R., Gilman, M., & Perrimon, N. (1998). Drosophila unpaired encodes a secreted protein that activates the JAK signaling pathway. Genes & Development, 12(20), 3252–3263.

    CAS  Google Scholar 

  29. Moustakas, A. (2002). Smad signalling network. Journal of Cell Science, 115(Pt 17), 3355–3356.

    PubMed  CAS  Google Scholar 

  30. Lin, H. (2002). The stem-cell niche theory: Lessons from flies. Nature Reviews. Genetics, 3(12), 931–940.

    Article  PubMed  CAS  Google Scholar 

  31. Xie, T., & Spradling, A. C. (1998). Decapentaplegic is essential for the maintenance and division of germline stem cells in the Drosophila ovary. Cell, 94(2), 251–260.

    Article  PubMed  CAS  Google Scholar 

  32. Kai, T., & Spradling, A. (2003). An empty Drosophila stem cell niche reactivates the proliferation of ectopic cells. Proceedings of the National Academy of Sciences of the United States of America, 100(8), 4633–4638.

    Article  PubMed  CAS  Google Scholar 

  33. Wallenfang, M., Nayak, R., & DiNardo, S. (2006). Dynamics of the male germline stem cell population during aging of Drosophila melanogaster. Aging Cell, 5, 297–304.

    Article  PubMed  CAS  Google Scholar 

  34. Boyle, M., et al. Decline in self-renewal factors contributes to aging of the stem cell niche. (Submitted)

  35. Hardy, R. W., Tokuyasu, K. T., Lindsley, D. L., & Garavito, M. (1979). The germinal proliferation center in the testis of Drosophila melanogaster. Journal of Ultrastructure Research, 69(2), 180–190.

    Article  PubMed  CAS  Google Scholar 

  36. Helfand, S. L., & Rogina, B. (2003). Molecular genetics of aging in the fly: Is this the end of the beginning? Bioessays, 25(2), 134–141.

    Article  PubMed  CAS  Google Scholar 

  37. de Cuevas, M., & Spradling, A. C. (1998). Morphogenesis of the Drosophila fusome and its implications for oocyte specification. Development, 125(15), 2781–2789.

    PubMed  Google Scholar 

  38. McKearin, D., & Ohlstein, B. (1995). A role for the Drosophila bag-of-marbles protein in the differentiation of cystoblasts from germline stem cells. Development, 121(9), 2937–2947.

    PubMed  CAS  Google Scholar 

  39. Brawley, C., & Matunis, E. (2004). Regeneration of male germline stem cells by spermatogonial dedifferentiation in vivo. Science, 304(5675), 1331–1334.

    Article  PubMed  CAS  Google Scholar 

  40. Margolis, J., & Spradling, A. (1995). Identification and behavior of epithelial stem cells in the Drosophila ovary. Development, 121(11), 3797–3807.

    PubMed  CAS  Google Scholar 

  41. Song, X., Zhu, C. H., Doan, C., & Xie, T. (2002). Germline stem cells anchored by adherens junctions in the Drosophila ovary niches. Science, 296(5574), 1855–1857.

    Article  PubMed  CAS  Google Scholar 

  42. Conboy, I. M., Conboy, M. J., Wagers, A. J., Girma, E. R., Weismann, I. L., & Rando, T. A. (2005). Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature, 433(7027), 760–764.

    Article  PubMed  CAS  Google Scholar 

  43. Rando, T. A. (2006). Stem cells, ageing and the quest for immortality. Nature, 441(7097), 1080–1086.

    Article  PubMed  CAS  Google Scholar 

  44. Fujiwara, T., Dunn, N. R., & Hogan, B. L. (2001). Bone morphogenetic protein 4 in the extraembryonic mesoderm is required for allantois development and the localization and survival of primordial germ cells in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 98(24), 13739–13744.

    Article  PubMed  CAS  Google Scholar 

  45. Clark, A. T., Bodnar, M. S., Fox, M., Rodriguez, R. T., Abeyta, M. J., Firpo, M. T., et al. (2004). Spontaneous differentiation of germ cells from human embryonic stem cells in vitro. Human Molecular Genetics, 13(7), 727–739.

    Article  PubMed  CAS  Google Scholar 

  46. Chuma, S., Kanatsu-Shinohara, M., Inoue, K., Ogonuki, N., Miki, H., Toyokuni, S., et al. (2005). Spermatogenesis from epiblast and primordial germ cells following transplantation into postnatal mouse testis. Development, 132(1), 117–122.

    Article  PubMed  CAS  Google Scholar 

  47. Zwaka, T. P., & Thomson, J. A. (2005). A germ cell origin of embryonic stem cells? Development, 132(2), 227–233.

    Article  PubMed  CAS  Google Scholar 

  48. Kanatsu-Shinohara, M., & Shinohara, T. (2006). The germ of pluripotency. Nature Biotechnology, 24(6), 663–664.

    Article  PubMed  CAS  Google Scholar 

  49. Brinster, R. L., & Zimmermann, J. W. (1994). Spermatogenesis following male germ-cell transplantation. Proceedings of the National Academy of Sciences of the United States of America, 91(24), 11298–11302.

    Article  PubMed  CAS  Google Scholar 

  50. Brinster, R. L. (2002). Germline stem cell transplantation and transgenesis. Science, 296(5576), 2174–2176.

    Article  PubMed  CAS  Google Scholar 

  51. Meng, X., Lindhal, M., Hyvonen, M. E., Parvinen, M., de Rooim, D. G., Hess, N. W., et al. (2000). Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science, 287(5457), 1489–1493.

    Article  PubMed  CAS  Google Scholar 

  52. Buaas, F. W., Kirsh, A. l., Sharma, M., McLean, D. J., Morris, J. L., Griswold, M. D., et al. (2004). Plzf is required in adult male germ cells for stem cell self-renewal. Nature Genetics, 36(6), 647–652.

    Article  PubMed  CAS  Google Scholar 

  53. Kubota, H., Avarbock, M. R., & Brinster, R. L. (2004). Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proceedings of the National Academy of Sciences of the United States of America, 101(47), 16489–16494.

    Article  PubMed  CAS  Google Scholar 

  54. Ryu, B. Y., Orwig, K. E., Oatley, J. M., Avarbock, M. R., & Brinster, R. L. (2006). Effects of aging and niche microenvironment on spermatogonial stem cell self-renewal. Stem Cells, 24(6), 1505–1511.

    Article  PubMed  CAS  Google Scholar 

  55. Zhang, X., Ebata, K. T., Robaira, B., & Nagano, M. C. (2006). Aging of male germ line stem cells in mice. Biology of Reproduction, 74(1), 119–124.

    Article  PubMed  CAS  Google Scholar 

  56. Siminovitch, L., Till, J. E., & McCulloch, E. A. (1964). Decline in colony-forming ability of marrow cells subjected to serial transplantation into irradiated mice. Journal of Cellular Physiology, 64, 23–31.

    Article  PubMed  CAS  Google Scholar 

  57. Ogden, D. A., & MIcklem, H. S. (1976). The fate of serially transplanted bone marrow cell populations from young and old donors. Transplantation, 22, 287–293.

    Article  PubMed  CAS  Google Scholar 

  58. Harrison, D. E., & Astle, C. M. (1982). Loss of stem cell repopulating ability upon transplantation. Effects of donor age, cell number, and transplantation procedure. Journal of Experimental Medicine, 156(6), 1767–1779.

    Article  PubMed  CAS  Google Scholar 

  59. Zuckerman, S. (1951). The number of ooctyes in the mature ovary. Recent Progress in Hormone Research, 6, 63–109.

    Google Scholar 

  60. Tilly, J. L. (2001). Commuting the death sentence: How oocytes strive to survive. Nature Reviews. Molecular Cell Biology, 2(11), 838–848.

    Article  PubMed  CAS  Google Scholar 

  61. Richardson, S. J., Senikas, V., & Nelson, J. F. (1987). Follicular depletion during the menopausal transition: Evidence for accelerated loss and ultimate exhaustion. Journal of Clinical Endocrinology and Metabolism, 65(6), 1231–1237.

    Article  PubMed  CAS  Google Scholar 

  62. Zuckerman, S., & Baker, T. G. (1977). The development of the ovary and the process of oogenesis. In S. Zuckerman, & B. J. Weir (Eds.), The ovary (pp. 41–67). New York: Academic.

    Google Scholar 

  63. Gosden, R. G., Laing, S.C., Felicio, L. S., Nelson, J. F., & Finch, C. E. (1983). Imminent oocyte exhaustion and reduced follicular recruitment mark the transition to acyclicity in aging C57BL/6J mice. Biology of Reproduction, 28(2), 255–260.

    Article  PubMed  CAS  Google Scholar 

  64. Johnson, J., Canning, J., Kaneko, T., Pru, J. K., & Tilly, J. L. (2004). Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature, 428(6979), 145–150.

    Article  PubMed  CAS  Google Scholar 

  65. Johnson, J., Badgeley, J., Skaznik-Wikiel, M., Lee, H. J., Adams, G. B., Niikura, Y., et al. (2005). Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell, 122(2), 303–315.

    Article  PubMed  CAS  Google Scholar 

  66. Greer, E. L., & Brunet, A. (2005). FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene, 24(50), 7410–7425.

    Article  PubMed  CAS  Google Scholar 

  67. Tothova, Z., Kollipara, R., Huntly, B. J., Lee, B. H., Castrillon, D. H., Cullen, D. E., et al. (2007). FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell, 128(2), 325–339.

    Article  PubMed  CAS  Google Scholar 

  68. Kirkwood, T. B. (1987). Immortality of the germ-line versus disposability of the soma. Basic Life Sciences, 42, 209–218.

    PubMed  CAS  Google Scholar 

  69. Smelick, C., & Ahmed, S. (2005). Achieving immortality in the C. elegans germline. Ageing Research Reviews, 4(1), 67–82.

    Article  PubMed  Google Scholar 

  70. Lombard, D. B., Chua, K. F., Mostoslavsky, R., Franco, S., Gostissa, M., & Alt, F. W. (2005). DNA repair, genome stability, and aging. Cell, 120(4), 497–512.

    Article  PubMed  CAS  Google Scholar 

  71. Degtyareva, N. P., Greenwall, P., Randal Hofmann, E., Hengartner, M. O., Zhang, L., Culotti, J. G., et al. (2002). Caenorhabditis elegans DNA mismatch repair gene msh-2 is required for microsatellite stability and maintenance of genome integrity. Proceedings of the National Academy of Sciences of the United States of America, 99(4), 2158–2163.

    Article  PubMed  CAS  Google Scholar 

  72. Tijsterman, M., Pothof, J., & Plasterk, R. H. (2002). Frequent germline mutations and somatic repeat instability in DNA mismatch-repair-deficient Caenorhabditis elegans. Genetics, 161(2), 651–660.

    PubMed  CAS  Google Scholar 

  73. Engels, W. R., Johnson-Schlitz D., Flores, C., White, L., & Preston, C. R. (2007). A third link connecting aging with double strand break repair. Cell Cycle, 6(2), 131–135.

    Google Scholar 

  74. Preston, C. R., Flores, C., & Engels, W. R. (2006). Age-dependent usage of double-strand-break repair pathways. Current Biology, 16(20), 2009–2015.

    Article  PubMed  CAS  Google Scholar 

  75. Ahmed, S., & Hodgkin, J. (2000). MRT-2 checkpoint protein is required for germline immortality and telomere replication in C. elegans. Nature, 403(6766), 159–164.

    Article  PubMed  CAS  Google Scholar 

  76. Meier, B., Clejan, I., Liu, Y., Lowden, M., Gartner, A., Hodgkin, J., et al. (2006). trt-1 is the Caenorhabditis elegans catalytic subunit of telomerase. PLoS Genet, 2(2), e18.

    Article  PubMed  CAS  Google Scholar 

  77. Zucchero, T., & Ahmed, S. (2006). Genetics of proliferative aging. Experimental Gerontology, 41(10), 992–1000.

    Article  PubMed  CAS  Google Scholar 

  78. Ahmed, S. (2006). Uncoupling of pathways that promote postmitotic life span and apoptosis from replicative immortality of Caenorhabditis elegans germ cells. Aging Cell, 5(6), 559–563.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Thomas Flatt, Andrew Dillin, Shawn Ahmed, and Matt Wallenfang for helpful discussions and comments on the manuscript and acknowledges support from the Ellison Medical Foundation, the American Federation for Aging Research, the G. Harold and Leila Y. Mathers Charitable Foundation, and NIH/NIA grant R01 AG028092 (D.L.J.). I apologize to those colleagues whose work has not been referenced directly due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Leanne Jones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, D.L. Aging and the Germ Line: Where Mortality and Immortality Meet. Stem Cell Rev 3, 192–200 (2007). https://doi.org/10.1007/s12015-007-0009-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-007-0009-3

Keywords

Navigation