Biology Bulletin

, Volume 34, Issue 4, pp 408–416 | Cite as

Modeling organic matter dynamics in conifer-broadleaf forests in different site types upon fires: A computational experiment

  • A. S. Komarov
  • T. S. Kubasova
Soil Biology

Abstract

The effect of forest fires differing in intensity on organic matter dynamics in forest soils has been assessed in different types of forest sites using the EFIMOD system of models. Differences between the patterns of organic matter dynamics according to scenarios of forest ecosystem development under normal conditions and upon forest fires have been analyzed. Recovery rates of soil organic matter pools after fires depend on their intensity and frequency. The most profound changes take place upon high-intensity crown fires, which may even result in ecosystem destruction.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albini, F.A., Estimating Wildfire Behaviour and Effects, USDA For. Serv. Gen. Technic. Rep. INT-30, Ogden, Utah, 1976.Google Scholar
  2. Aleksandrova, L.N., Organicheskoe veshchestvo pochvy i protsessy ego transformatsii (Soil Organic Matter and the Processes of Its Transformation), Leningrad: Nauka, 1980.Google Scholar
  3. Bezkorovainaya, I.N., Ivanova, G.A., Tarasov, P.A., et al., Pyrogenic Transformation of Soils in Middle Taiga Pine Forests of Krasnoyarsk Krai, Sib. Ekol. Zh., 2005, no. 1, pp. 143–152.Google Scholar
  4. Bobrovskii, M.V., Forest Soils: Biotic and Anthropogenic Factors of Their Formation, in Vostochnoevropeiskie lesa: istoriya v golotsene i sovremennost’ (Eastern European Forest: Holocene History and Current State), Smirnova, O.V., Ed., Moscow: Nauka, 2004.Google Scholar
  5. Bruun, S. and Jensen, L.S., Initialization of the Soil Organic Matter Pools of the Daisy Model, Ecol. Model., 2002, vol. 153, pp. 291–295.CrossRefGoogle Scholar
  6. Buzykin, A.I., Influence of Forest Litter and Moss Cover on Soil Temperature Conditions, in Rol’podstilki v lesnykh biogeotsenozakh: Tez. dokl. Vsesoyuzn. soveshch (Abstr. All-Union Conf. on the Role of Litter in Forest Biogeocenoses), Krasnoyarsk, 1983, pp. 30–31.Google Scholar
  7. Bykhovets, S.S. and Komarov, A.S., A Simple Statistical Imitator of Soil Climate with a One-Month Step, Pochvovedenie, 2002, no. 4, pp. 443–452.Google Scholar
  8. Chertov, O.G., Ekologiya lesnykh zemel’ (Ecology of Forest Lands), Leningrad: Nauka, 1981.Google Scholar
  9. Chertov, O.G. and Komarov, A.S., A Simulation Model of Soil Organic Matter Dynamics, Vestn. St.-Peterb. Gos. Univ., Ser. 3., 1996, no. 1, pp. 104–109.Google Scholar
  10. Chertov, O.G., Komarov, A.S., Nadporozhskaya, M.A., et al., ROMUL: A Model of Forest Soil Organic Matter Dynamics As a Substantial Tool for Forest Ecosystem Modelling, Ecol. Model., 2001, vol. 138, pp. 289–308.CrossRefGoogle Scholar
  11. Covington, W.W., Changes in the Forest Floor Organic Matter and Nutrient Content Following Clear Cutting in Northern Hardwoods, Ecology, 1981, vol. 62, pp. 41–48.CrossRefGoogle Scholar
  12. Furyaev, V.V., Rol’ pozharov v protsesse lesoobrazovaniya (Role of Fires in Forest Formation), Novosibirsk: Nauka, 1996.Google Scholar
  13. Howard, E.A., Gower, S.T., Foley, J.A., et al., Effects of Logging on Carbon Dynamics of a Jack Pine Forest in Saskatchewan, Canada, Global Change Biol., 2004, vol. 10, pp. 1267–1284.CrossRefGoogle Scholar
  14. Jenkinson, D.S. and Rayner, J.H., The Turnover of Soil Organic Matter in Some of the Rothamsted Classical Experiments, Soil Sci., 1977, vol. 123, no. 5, pp. 298–305.CrossRefGoogle Scholar
  15. Keane, R.E., Landscape Fire Succession Modeling: Linking Ecosystem Simulations for Comprehensive Applications, in Proc. LFMW. Inform. Rep. NOR-X-371 Can. Forest Service, Victoria, British Columbia, 2000, p. 5–8.Google Scholar
  16. Kerzhentsev, A.S., Mechanism of Spatiotemporal Variation of Soils, in Ekologiya i pochvy (Ecology and Soils), Pushchino, 1999, vol. 3, pp. 31–58.Google Scholar
  17. Komarov, A.S. and Chertov, O.G., Carbon Input into the Soil As A criterion of Sustainable Functioning of Forest Ecosystems, in Modelirovanie dinamiki organicheskogo veshchestva v lesnykh ekosistemakh (Modeling Organic Matter Dynamics in Forest Ecosystems), Kudeyarov, V.N., Ed., Moscow: Nauka, 2007, pp. 233–241.Google Scholar
  18. Komarov, A., Chertov, O., Zudin, S., et al., EFIMOD 2: The System of Simulation Models of Forest Growth and Elements Cycles in Forest Ecosystems, Ecol. Model., 2003, vol. 170, pp. 373–392.CrossRefGoogle Scholar
  19. Korchagin, A.A., Impact of Fires on Forest Vegetation and Its Postfire Regeneration in Northern Europe, Tr. Bot. Inst. Akad. Nauk SSSR, Ser. Geobot., 1954, no. 9, pp. 75–149.Google Scholar
  20. Kubasova, T.S. and Loukianov, A.M., Simulation Modeling Methods for Assessing the Impact of Forest Fires on Carbon Turnover, Mater. mezhdunar. nauch.-prakt. konf. “Lesopol’zovanie, ekologiya i okhrana lesov: fundamental’nye i prikladnye aspektty” (Proc. Int. Sci.-Pract. Conf. “Forest Management, Ecology, and Conservation: Fundamental and Applied Aspects”), Tomsk, 2005a, pp. 238–239.Google Scholar
  21. Kubasova, T.S. and Loukianov, A.M., Modelling of Soil Organic Matter Dynamics after Forest Fires Using ROMUL Model, Proc. Eur. Conf. Ecol. Model. ECEM), Pushchino, 2005b, pp. 102–103.Google Scholar
  22. Kudeyarov, V.N., Nitrogen-Carbon Balance in the Soil, Pochvovedenie, 1999, no. 1, pp. 73–82.Google Scholar
  23. Kurz, W.A. and Apps, M.J., A 70-Year Retrospective Analysis of Carbon Fluxes in the Canadian Forest, Ecol. Appl., 1999, vol. 9, pp. 526–547.CrossRefGoogle Scholar
  24. Lieffers, V.J., Messier, C., Burton, P.J., et al., Nature-Based Silviculture for Sustaining a Variety of Boreal Forest Values, in Towards Sustainable Management of the Boreal Forest, Eds. Burton P.J., Messier C., Smith D.W., and Adamowicz, W.L., Ottawa: NRC Res. Press, 2003, pp. 481–530.Google Scholar
  25. Liski, J., Palosuo, T., Peltoniemi, M., et al., Carbon and Decomposition Model Yasso for Forest Soils, Ecol. Model., 2005, vol. 189, pp. 168–182.CrossRefGoogle Scholar
  26. Medvedeva, I.F., Bykhovets, S.S., Nesmeyanova, E.I., et al., Climatic Characteristics of the Prioksko-TerrasnyiBiosphere Reserve, in Ekologicheskii monitoring Prioksko-terrasnogo biosfernogo zapovednika (Ecological Monitoring in the Prioksko-Terrasnyi Biosphere Reserve), Pushchino: NTsBI AN SSSR, 1983, pp. 36–57.Google Scholar
  27. Melekhov, I.S., Priroda lesa i lesnye pozhary (Forest Nature and Forest Fires), Arkhangelsk: Arkhangelsk. Lesotekhn. Inst., 1947.Google Scholar
  28. Modelirovanie dinamiki organicheskogo veshchestva v lesnykh ekosistemakh (Modeling Organic Matter Dynamics in Forest Ecosystems), Kudeyarov, V.N., Ed., Moscow: Nauka, 2007.Google Scholar
  29. Nesterov, V.G., Obshchee lesovodstvo (General Forestry), Moscow: Goslesbumizdat, 1954.Google Scholar
  30. Remezov, N.P. and Pogrebnyak, P.S., Lesnoe podivovedenie (Forest Soil Science), Moscow: Lesnaya Promyshlennost’, 1965.Google Scholar
  31. Rothermel, R.C., A Mathematical Model for Predicting Fire Spread in Wildland Fuels, USDA For. Serv. Res, 1972.Google Scholar
  32. Semenov, V.M., Kravchenko, I.K., Ivannikova, L.A., et al., Experimental Determination of Active Organic Matter in Some Soils of Natural and Agricultural Ecosystems, Pochvovedenie, 2006, no. 3, pp. 282–292.Google Scholar
  33. Shaw, C., Chertov, O., Komarov, A., et al., Application of the Forest Ecosystem Model EFIMOD 2 to Jack Pine along the BFTCS, Can. J. Soil Sci., 2006, vol. 86, no. 2, pp. 171–185.Google Scholar
  34. Smirnova, O.V., Population Organization of the Biogeocenotic Cover in Forest Areas, in Otsenka i sokhranenie bioraznoobraziya lesnogo pokrova v zapovednikakh Evropeiskoi Rossii (Assessment and Conservation of Forest Cover Biodiversity in Reserves of European Russia), Moscow: Nauchnyi Mir, 2000, pp. 14–22.Google Scholar
  35. Sofronov, M.A. and Volokitina, A.V., Procedure for Assessing Carbon Balance by Biomass Dynamics in Pyrogenic Successions, Lesovedenie, 1998, no. 3, pp. 36–42.Google Scholar
  36. Sofronov, M.A., Shvidenko, A.Z., Goldammer, I.G., et al., Effect of Firest on Carbon Balance in the Boreal Zone of Northern Eurasia: Creating an Information Basis for Models, Lesovedenie, 2000, no. 4, pp. 3–8.Google Scholar
  37. Utkin, A.I., Zamolodchikov, D.G., Gul’be, Ya.I., et al., Phytomass-Dependent Predictors of Aboveground Net Primary Production in Stands of Main Forest-Forming Species in Russia, Sib. Ekol. Zh., 2005, no. 4, pp. 707–715.Google Scholar
  38. Vostochnoevropeiskie shirokolistvennye lesa (Eastern European Broadleaf Forests), Smirnova, O.V., Ed., Moscow: Nauka, 1994.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2007

Authors and Affiliations

  • A. S. Komarov
    • 1
  • T. S. Kubasova
    • 1
  1. 1.Institute of Physicochemical and Biological Problems in Soil ScienceRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations