Skip to main content
Log in

Simulation Modeling of Forest Soil Respiration: Case Study of Entic Carbic Podzol under Coniferous–Broadleaved Forest in the South of Moscow Oblast

  • MODELING OF SOIL RESPIRATION
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The values of heterotrophic (HR) and total soil respiration for the Entic Carbic Podzol under a coniferous–broadleaved forest in the south of Moscow oblast (54.89° N, 37.56° E) calculated using the Romul_Hum model and a new version of the EFIMOD3 system of models are reported. The results of soil respiration modeling correlate well with the field measurement data. The Romul_Hum model better simulates the HR intensity of the studied soil in wet years as compared with dry years, when it somewhat overestimates the HR values. The spatially explicit modeling of HR and root respiration using EFIMOD3 takes into account the variation of carbon pools and fluxes associated with the distribution of the plant litterfall and hydrothermal conditions under the forest canopy. The results show that the HR intensity differs approximately twofold in early and middle growing season, and the HR values in individual parts of the simulation site at the same dates differ more than 3.5-fold. The spatial and temporal variation of soil respiration influences the accuracy of estimates for the carbon budget in forest ecosystems. The used models are efficient tools for analyzing the changes in carbon stocks and soil respiration and estimating carbon sink in forest ecosystems, including the tasks related to forest management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. A. Bobrik, O. Yu. Goncharova, G. V. Matyshak, I. M. Ryzhova, M. I. Makarov, and M. V. Timofeeva, “Spatial distribution of the components of carbon cycle in soils of forest ecosystems of the northern, middle, and southern taiga of Western Siberia,” Eurasian Soil Sci. 53 (11), 1549–1560 (2020). https://doi.org/10.1134/S1064229320110058

    Article  Google Scholar 

  2. L. G. Bogatyrev, A. I. Benediktova, Ph. I. Zemskov, A. N. Demidova, A. V. Boyko, A. V. Rappoport, A. N. Vartanov, N. I. Zhilin, D. D. Gosse, and V. V. Demin, “Typology of stand litter for some types of plantings at Moscow State University’s Botanical Garden,” Moscow Univ. Soil Sci. Bull. 74 (2), 49–60 (2019).

    Article  Google Scholar 

  3. O. N. Bulygina, V. M. Veselov, V. N. Razuvaev, and T. M. Aleksandrova, Description of the Array of Urgent Data on the Main Meteorological Parameters at the Stations of Russia. Certificate of State Registration of the Database No. 2014620549. http://meteo.ru/data/ 163-basic-parameters#oпиcaниe-мaccивa-дaнныx. Cited September 6, 2022.

  4. S. S. Bykhovets and A. S. Komarov, “Simple statistical soil climate simulator with monthly steps,” Pochvovedenie, No. 4, 443–452 (2002).

    Google Scholar 

  5. M. L. Gitarskii, D. G. Zamolodchikov, V. A. Mukhin, D. K. Diyarova, V. A. Grabar, D. V. Karelin, A. I. Ivashchenko, and A. S. Marunich, “Seasonal variability of carbon dioxide emission during the decomposition of spruce deadwood in the southern taiga of Valdai,” Lesovedenie, No. 3, 239–249 (2020). https://doi.org/10.31857/S0024114820030055

    Article  Google Scholar 

  6. O. Yu. Goncharova, G. V. Matyshak, A. A. Bobrik, M. M. Udovenko, and A. R. Sefilian, “Procedural approaches to field determination of root and microbial respiration contribution to CO2 emission by permafrost-affected soils,” Moscow Univ. Soil Sci. Bull. 73 (1), 39–44 (2018).

    Article  Google Scholar 

  7. I. S. Grozovskaya, L. G. Khanina, V. E. Smirnov, M. V. Bobrovskii, M. S. Romanov, and E. M. Glukhova, “Biomass of the ground cover in the spruce forests of the Kostroma oblast,” Lesovedenie, No. 1, 63–76 (2015).

    Google Scholar 

  8. I. V. Yevdokimov, A. A. Larionova, M. Schmitt, V. O. Lopes de Gerenyu, and M. Bahn, “Determination of root and microbial contributions to the CO2 emission from soil by the substrate-induced respiration method,” Eurasian Soil Sci. 43 (3), 321–327 (2010).

    Article  Google Scholar 

  9. D. G. Zamolodchikov, D. V. Karelin, M. L. Gitarskii, and V. G. Blinov, Monitoring of Greenhouse Gas Fluxes in Natural Ecosystems (Amirit, Saratov, 2017) [in Russian].

    Google Scholar 

  10. I. V. Ivanov and I. G. Shadrikov, “Coevolution of soils and vegetation in the southern taiga (with the Prioksko-Terrasnyi reserve as an example),” Eurasian Soil Sci. 43 (11), 1230–1237 (2010).

    Article  Google Scholar 

  11. M. S. Kadulin and G. N. Koptsik, “Changes in the soil carbon dioxide efflux in forest ecosystems caused by technogenic pollution in the Kola Subarctic,” Eurasian Soil Sci. 54 (10), 1588–1598 (2021). https://doi.org/10.1134/S1064229321100070

    Article  Google Scholar 

  12. D. V. Karelin, A. I. Azovskii, A. S. Kamanyaev, and D. G. Zamolodchikov, “Significance of the spatial and temporal scale in the analysis of CO2 emission factors from the soil in the forests of the Valdai Upland,” Lesovedenie, No. 1, 29–37 (2019). https://doi.org/10.1134/S0024114819010078

    Article  Google Scholar 

  13. D. V. Karelin, D. G. Zamolodchikov, and A. S. Isaev, “Unconsidered sporadic sources of carbon dioxide emission from soils in taiga forests,” Dokl. Biol. Sci. 475, 165–168 (2017). https://doi.org/10.1134/S0012496617040093

    Article  Google Scholar 

  14. D. V. Karelin, D. G. Zamolodchikov, V. V. Kaganov, A. V. Pochikalov, and M. L. Gitarskii, “Microbial and root components of respiration in soddy-podzolic soils of the southern taiga,” Lesovedenie, No. 3, 183–193 (2017).

    Google Scholar 

  15. D. V. Karelin, A. V. Pochikalov, and D. G. Zamolodchikov, “The effect of increasing CO2 emission in the windows of the decay of the forests of Valdai,” Izv. Ross. Akad. Nauk. Ser. Geogr., No. 2, 60–68 (2017).

  16. D. V. Karelin, A. V. Pochikalov, D. G. Zamolodchikov, and M. L. Gitarskii, “Factors of spatio-temporal heterogeneity of CO2 fluxes from soils of the southern taiga spruce forest in Valdai,” Lesovedenie, No. 4, 56–66 (2014).

    Google Scholar 

  17. Classification and Diagnostics of Soils of Russia (Oikumena, Smolensk, 2004) [in Russian].

  18. Classification and Diagnostics of Soils (Kolos, Moscow, 1977) [in Russian].

  19. G. N. Koptsik, Yu. V. Kupriianova, and M. S. Kadulin, “Spatial variability of carbon dioxide emission by soils in the main types of forest ecosystems at the Zvenigorod Biological Station of Moscow State University,” Moscow Univ. Soil Sci. Bull. 73 (2), 81–88 (2018).

    Article  Google Scholar 

  20. M. A. Kuznetsov, “Influence of decomposition conditions and litter composition on the characteristics and litter stock in the middle taiga blueberry-sphagnum spruce forest,” Lesovedenie, No. 6, 54–60 (2010).

    Google Scholar 

  21. I. N. Kurganova, V. O. Lopes de Gerenyu, V. A. Ableeva, and S. S. Bykhovets, “The climate of the southern suburbs of Moscow: current trends and assessment of extremeness,” Fundam. Prikl. Climatol., No. 4, 62–78 (2017). https://doi.org/10.21513/2410-8758-2017-4-66-82

  22. I. N. Kurganova, V. O. Lopes de Gerenyu, T. N. Myakshina, D. V. Sapronov, and V. N. Kudeyarov, “CO2 emission from soils of various ecosystems of the Southern Taiga Zone: Data analysis of continuous 12-year monitoring,” Dokl. Biol. Sci. 436, 56–58 (2011).

    Article  Google Scholar 

  23. I. N. Kurganova, V. O. Lopes de Gerenyu, A. S. Petrov, T. N. Myakshina, D. V. Sapronov, V. A. Ableeva, and V. N. Kudeyarov, “Effect of the observed climate changes and extreme weather phenomena on the emission component of the carbon cycle in different ecosystems of the southern taiga zone,” Dokl. Biol. Sci. 441, 412–416 (2011).

    Article  Google Scholar 

  24. I. N. Kurganova, V. O. Lopes de Gerenyu, D. A. Khoroshaev, T. N. Myakshina, D. V. Sapronov, V. A. Zhmurin, and V. N. Kudeyarov, “Analysis of the long-term soil respiration dynamics in the forest and meadow cenoses of the Prioksko-Terrasny Biosphere Reserve in the perspective of current climate trends,” Eurasian Soil Sci. 53 (10), 1421–1436 (2020). https://doi.org/10.1134/S1064229320100117

    Article  Google Scholar 

  25. A. A. Larionova, I. V. Evdokimov, I. N. Kurganova, D. V. Sapronov, L. G. Kuznetsova, and V. O. Lopes de Gerenyu, “Root respiration and its contribution to CO2 emission from the soil,” Eurasian Soil Sci. 36 (2), 173–184 (2003).

    Google Scholar 

  26. A. A. Larionova, A. K. Kvitkina, S. S. Bykhovets, V. O. Gerenyu, Yu. G. Kolyagin, and V. V. Kaganov, “Effect of nitrogen on mineralization and humification of forest litter in a model experiment,” Lesovedenie, No. 2, 128–139 (2017).

    Google Scholar 

  27. A. N. Maltseva and D. L. Pinskiy, “Stabilization mechanisms of decomposition products of plant residues by density fractions of loam,” Eurasian Soil Sci. 53 (10), 1408–1420 (2020). https://doi.org/10.1134/S1064229320100129

    Article  Google Scholar 

  28. O. V. Masyagina, S. G. Prokushkin, A. P. Abaimov, Sh. Mori, and T. Koike, “CO2 emission from the surface of the ground cover in larch forests of central Evenkia,” Lesovedenie, No. 6, 19–29 (2005).

    Google Scholar 

  29. M. A. Nadporozhskaya, Extended Abstract of Candidate’s Dissertation in Agriculture (St. Petersburg, 2000).

  30. N. P. Nevedrov, D. A. Sarzhanov, E. P. Protsenko, and I. I. Vasenev, “Spatial and temporal dynamics of carbon dioxide emission from Al-Fe-humus sandy soils in the forest-steppe zone,” Eurasian Soil Sci. 55 (11), 1546–1555 (2022). https://doi.org/10.1134/S1064229322110096

    Article  Google Scholar 

  31. M. A. Orlova, N. V. Lukina, V. E. Smirnov, and N. A. Artemkina, “The influence of spruce on acidity and nutrient content in soils of Northern Taiga dwarf shrub–green moss spruce forests,” Eurasian Soil Sci. 49 (11), 1276–1287 (2016). https://doi.org/10.1134/S1064229316110077

    Article  Google Scholar 

  32. A. F. Osipov, “Effect of interannual difference in weather conditions of the growing season on the CO2 emission from the soil surface in the middle-taiga cowberry–lichen pine forest (Komi Republic),” Eurasian Soil Sci. 51 (12), 1419–1426 (2018). https://doi.org/10.1134/S1064229318120086

    Article  Google Scholar 

  33. A. F. Osipov, “Stocks and fluxes of organic carbon in the ecosystem of a ripe blueberry pine forest in the middle taiga,” Sib. Lesn. Zh., No. 2, 70–80 (2017). https://doi.org/10.15372/SJFS20170208

  34. D. L. Pinskii, A. N. Maltseva, B. N. Zolotareva, and E. D. Dmitrieva, “Transformation kinetics of corn and clover residues in mineral substrates of different composition,” Eurasian Soil Sci. 50 (6), 681–687 (2017). https://doi.org/10.1134/S1064229317060096

    Article  Google Scholar 

  35. A. V. Pochikalov and D. V. Karelin, “A field study of tundra plant litter decomposition rate via mass loss and carbon dioxide emission: the role of biotic and abiotic controls, biotope, season of year, and spatial-temporal scale,” Biol. Bull. Rev. 5 (3), 1–16 (2015).

    Article  Google Scholar 

  36. I. V. Priputina, S. S. Bykhovets, P. V. Frolov, O. G. Chertov, I. N. Kurganova, V. O. Lopes de Gerenyu, D. V. Sapronov, and T. N. Mjakshina, “Application of mathematical models ROMUL and Romul_Hum for estimating CO2 emission and dynamics of organic matter in Albic Luvisol under deciduous forest in the south of Moscow oblast,” Eurasian Soil Sci. 53 (10), 1480–1491 (2020). https://doi.org/10.1134/S1064229320100154

    Article  Google Scholar 

  37. I. V. Priputina, G. G. Frolova, V. N. Shanin, T. N. Myakshina, and P. Ya. Grabarnik, “Spatial distribution of organic matter and nitrogen in the Entic Podzols of the Prioksko-Terrasnyi Reserve and its relationship with the structure of forest phytocenoses,” Eurasian Soil Sci. 53 (8), 1021–1032 (2020). https://doi.org/10.1134/S1064229320080128

    Article  Google Scholar 

  38. N. P. Remezov, L. N. Bykova, and K. M. Smirnova, Consumption and Cycle of Nitrogen and Ash Elements in the Forests of the European Part of the USSR (Mosk. Univ., Moscow, 1959) [in Russian].

    Google Scholar 

  39. I. M. Ryzhova, V. M. Telesnina, and A. A. Sitnikova, “Dynamics of soil properties and carbon stocks structure in postagrogenic ecosystems of southern taiga during natural reforestation,” Eurasian Soil Sci. 53 (2), 240–252 (2020). https://doi.org/10.1134/S1064229320020106

    Article  Google Scholar 

  40. S. S. Safonov, D. V. Karelin, V. A. Grabar, B. A. Latyshev, V. I. Grabovskii, N. E. Uvarova, D. G. Zamolodchikov, V. N. Korotkov, and M. L. Gitarskii, “Carbon emission from deadwood decomposition in the southern taiga spruce forest,” Lesovedenie, No. 5, 44–49 (2012).

    Google Scholar 

  41. V. M. Semenov, L. A. Ivannikova, and A. S. Tulina, “Stabilization of organic matter in the soil,” Agrokhimiya, No. 10, 77–96 (2009).

    Google Scholar 

  42. O. V. Semenyuk, V. M. Telesnina, L. G. Bogatyrev, and A. I. Benediktova, “Structural and functional organization of forest litters as indicators of biological cycling intensity in urban forest stands (an example of Moscow),” Eurasian Soil Sci. 54 (5), 738–749 (2021). https://doi.org/10.1134/S1064229321050173

    Article  Google Scholar 

  43. I. A. Smorkalov, “Soil respiration variability: contributions of space and time estimated using the random forest algorithm,” Russ. J. Ecol. 53 (4), 295–307 (2022). https://doi.org/10.1134/S1067413622040051

    Article  Google Scholar 

  44. I. A. Smorkalov and E. L. Vorobeichik, “The impact of a large industrial city on the soil respiration in forest ecosystems,” Eurasian Soil Sci. 48 (1), 106–114 (2015). https://doi.org/10.1134/S1064229315010147

    Article  Google Scholar 

  45. E. N. Tikhonova, E. V. Men’ko, R. V. Ulanova, H. Li, and I. K. Kravchenko, “Effect of temperature on the taxonomic structure of soil bacterial communities during litter decomposition,” Microbiology (Moscow) 88 (6), 781–785 (2019).

    Article  Google Scholar 

  46. O. V. Trefilova, “Intensity of heterotrophic respiration in pine forests of the middle taiga,” Khvoinye Boreal’noi Zony 24 (4–5), 467–473 (2007).

    Google Scholar 

  47. P. A. Smirnov, “Flora of the Prioksko-Terrasny State Reserve,” in Proceedings of the Prioksko-Terrasny Reserve (Moscow, 1058), Vol. 2.

  48. V. N. Shanin, P. V. Frolov, and V. N. Korotkov, “Can artificial reforestation always be a forest climate project?,” Voprosy Lesnoi Nauki 5 (2), 106 (2022). https://doi.org/10.31509/2658-607x-202252-106

    Article  Google Scholar 

  49. V. N. Shanin, P. V. Frolov, I. V. Priputina, O. G. Chertov, S. S. Bykhovets, E. V. Zubkova, A. M. Portnov, G. G. Frolova, M. N. Stamenov, and P. Ya. Grabarnik, “Modeling the dynamics of forest ecosystems, taking into account their structural heterogeneity at different functional and spatial levels,” Voprosy Lesnoi Nauki 5 (3), (2022). https://doi.org/10.31509/2658-607x-202252-112

  50. R. Z. Abramoff, E. A. Davidson, and A. C. Finzi, “A parsimonious modular approach to building a mechanistic belowground carbon and nitrogen model,” J. Geophys. Res. Biogeosci. 122, 2418–2434 (2017). https://doi.org/10.1002/2017jg003796

    Article  Google Scholar 

  51. A. Ahtikoski, J. Rämö, A. Juutinen, V. Shanin, and R. Mäkipää, “Continuous cover forestry and cost of carbon abatement on mineral soils and peatlands,” Front. Environ. Sci. 10, (2022). https://doi.org/10.3389/fenvs.2022.837878

  52. N. Buchmann, “Biotic and abiotic factors controlling soil respiration rates in Picea abies stands,” Soil Biol. Biochem. 32, 1625–1635 (2000). https://doi.org/10.1016/S0038-0717(00)00077-8

    Article  Google Scholar 

  53. D. R. Cameron, M. Van Oijen, C. Werner, K. Butterbach-Bahl, R. Grote, E. Haas, G. B. M. Heuvelink, R. Kiese, J. Kros, M. Kuhnert, A. Leip, G. J. Reinds, H. I. Reuter, M. J. Schelhaas, W. De Vries, and J. Yeluripati, “Environmental change impacts on the C- and N-cycle of European forests: a model comparison study,” Biogeosciences 10, 1751–1773 (2013). https://doi.org/10.5194/bg-10-1751-2013

    Article  Google Scholar 

  54. O. G. Chertov, A. S. Komarov, M. A. Nadporozhskaya, S. S. Bykhovets, and S. L. Zudin, “ROMUL – a model of forest soil organic matter dynamics as a substantial tool for forest ecosystem modeling,” Ecol. Modell. 138, 289–308 (2001). https://doi.org/10.1016/S0304-3800(00)00409-9

    Article  Google Scholar 

  55. O. Chertov, A. Komarov, C. Shaw, S. Bykhovets, P.  Frolov, V. Shanin, P. Grabarnik, I. Priputina, E. Zubkova, and M. Shashkov, “Romul_Hum—a model of soil organic matter formation coupling with soil biota activity. II. Parameterisation of the soil food web biota activity,” Ecol. Modell. 345, 125–139 (2017). https://doi.org/10.1016/j.ecolmodel.2016.10.024

    Article  Google Scholar 

  56. M. Didion, B. Frey, N. Rogiers, and E. Thurig, “Validating tree litter decomposition in the Yasso07 carbon model,” Ecol. Modell. 291, 58–68 (2014). https://doi.org/10.1016/j.ecolmodel.2014.07.028

    Article  Google Scholar 

  57. J. P. M. Dijkstra, G. J. Reinds, H. Kros, B. Berg, and W. de Vries, “Modelling soil carbon sequestration of intensively monitored forest plots in Europe by three different approaches,” For. Ecol. Manage. 258, 1780–1793 (2009). https://doi.org/10.1016/j.foreco.2008.09.011

    Article  Google Scholar 

  58. B. Dimassi, B. Guenet, N. P. A. Saby, F. Munoz, M. Bardy, F. Millet, and M. P. Martin, “The impacts of CENTURY model initialization scenarios on soil organic carbon dynamics simulation in French long-term experiments,” Geoderma 311, 25–36 (2018). https://doi.org/10.1016/j.geoderma.2017.09.038

    Article  Google Scholar 

  59. Y. Ding, J. Leppälammi-Kujansuu, and H.-S. Helmisaari, “Fine root longevity and below- and aboveground litter production in a boreal Betula pendula forest,” For. Ecol. Manage. 431, 17–25 (2019). https://doi.org/10.1016/j.foreco.2018.02.039

    Article  Google Scholar 

  60. C. H. Ettema and D. A. Wardle, “Spatial soil ecology,” in Trends Ecology Evolution 17, 177–183 (2002). https://doi.org/10.1016/s0169-5347(02)02496-5

    Article  Google Scholar 

  61. P. D. Falloon and P. Smith, “Modelling refractory soil organic matter,” Biol. Fertil. Soils 30, 388–398 (2000). https://doi.org/10.1007/s003740050019

    Article  Google Scholar 

  62. P. Falloon, P. Smith, K. Coleman, and S. Marshall, “Estimating the size of the inert organic matter pool from total soil organic carbon content for use in the Rothamsted carbon model,” Soil Biol. Biochem. 30, 1207–1211 (1998). https://doi.org/10.1016/S0038-0717(97)00256-3

    Article  Google Scholar 

  63. U. Franko, K. Kuka, I. A. Romanenko, and V. A. Romanenkov, “Validation of the CANDY model with Russian long-term experiments,” Reg. Environ. Change 7, 79–91 (2007). https://doi.org/10.1007/s10113-007-0027-3

    Article  Google Scholar 

  64. W. S. Gordon and R. B. Jackson, “Nutrient concentrations in fine roots,” Ecology 81, 275–280 (2000). https://doi.org/10.1890/0012-9658(2000)081[0275:NCIFR]2.0.CO;2

    Article  Google Scholar 

  65. E. Grüneberg, D. Ziche, and N. Wellbrock, “Organic carbon stocks and sequestration rates of forest soils in Germany,” Global Change Biol. 20, 2644–2662 (2014). https://doi.org/10.1111/gcb.12558

    Article  Google Scholar 

  66. L. He, D. A. Lipson, J. L. Mazza Rodrigues, M. Mayes, R. G. Björk, B. Glaser, and X. Xu, “Dynamics of fungal and bacterial biomass carbon in natural ecosystems: site-level applications of the CLM-Microbe model,” J. Adv. Model. Earth Syst., (2020). https://doi.org/10.1029/2020ms002283

  67. A. Heinemeyer, I. P. Hartley, J. A. Carreira de la Fuente, and P. Ineson, “Forest soil CO2 flux: uncovering the contribution and environmental responses of ectomycorrhizas,” Glob. Chang. Biol. 13, 1786–1797 (2007). https://doi.org/10.1111/j.1365-2486.2007.01383.x

    Article  Google Scholar 

  68. M. Herbst, G. Welp, A. Macdonald, M. Jate, A. Hädicke, H. Scherer, T. Gaiser, F. Herrmann, W. Amelung, and J. Vanderborght, “Correspondence of measured soil carbon fractions and RothC pools for equilibrium and non-equilibrium states,” Geoderma 314, 37–46 (2018). https://doi.org/10.1016/j.geoderma.2017.10.047

    Article  Google Scholar 

  69. H. Jochheim, S. Wirth, V. Gartiser, S. Paulus, C. Haas, H. H. Gerke, and M. Maier, “Dynamics of soil CO2 efflux and vertical CO2 production in a European Beech and a Scots Pine forest,” Front. For. Glob. Change 5, 826298 (2022). https://doi.org/10.3389/ffgc.2022.826298

    Article  Google Scholar 

  70. A. Komarov, O. Chertov, S. Zudin, M. Nadporozhskaya, A. Mikhailov, S. Bykhovets, E. Zudina, and E. Zubkova, “EFIMOD 2 – a model of growth and elements cycling of boreal forest ecosystems,” Ecol. Modell. 170, 373–392 (2003). https://doi.org/10.1016/S0304-3800(03)00240-0

    Article  Google Scholar 

  71. A. Komarov, O. Chertov, S. Bykhovets, C. Shaw, M. Nadporozhskaya, P. Frolov, M. Shashkov, V. Shanin, P. Grabarnik, I. Priputina, and E. Zubkova, “Romul_Hum model of soil organic matter formation coupled with soil biota activity. I. Problem formulation, model description, and testing,” Ecol. Modell. 345, 113–124 (2017). https://doi.org/10.1016/j.ecolmodel.2016.08.007

    Article  Google Scholar 

  72. K. Kuka, U. Franko, and J. Rühlmann, “Modelling the impact of pore space distribution on carbon turnover,” Ecol. Modell. 208, 295–306 (2007). https://doi.org/10.1016/j.ecolmodel.2007.06.002

    Article  Google Scholar 

  73. I. Kurganova, V. Lopes De Gerenyu, D. Khoroshaev, T. Myakshina, D. Sapronov, and V. Zhmurin, “Temperature sensitivity of soil respiration in two temperate forest ecosystems: the synthesis of a 24-year continuous observation,” Forests 13, 1374 (2022). https://doi.org/10.3390/f13091374

    Article  Google Scholar 

  74. P. Lasch-Born, F. Suckow, C. P. O. Reyer, M. Gutsch, C. Kollas, F.-W. Badeck, H. K. M. Bugmann, R. Grote, F. Fürstenau, M. Lindner, and J. Schaber, “Description and evaluation of the process-based forest model 4C v2.2 at four European forest sites,” Geosci. Model Dev. 13, 5311–5343 (2020). https://doi.org/10.5194/gmd-13-5311-2020

    Article  Google Scholar 

  75. B. E. Law, M. G. Ryan, and P. M. Anthoni, “Seasonal and annual respiration of a ponderosa pine ecosystem,” Glob. Chang. Biol. 5, 169–182 (1999). https://doi.org/10.1046/j.1365-2486.1999.00214.x

    Article  Google Scholar 

  76. Y. Liu, N. He, X. Wen, L. Xu, X. Sun, G. Yu, L. Liang, and L. A. Schipper, “The optimum temperature of soil microbial respiration: patterns and controls,” Soil Biol. Biochem. 121, 35–42 (2018). https://doi.org/10.1016/j.soilbio.2018.02.019

    Article  Google Scholar 

  77. S. Manzoni, P. Čapek, P. Porada, M. Thurner, M. Winterdahl, C. Beer, V. Brüchert, J. Frouz, A. M. Herrmann, B. D. Lindahl, S. W. Lyon, H. Šantrůčková, G. Vico, and D. Way, “Reviews and syntheses: carbon use efficiency from organisms to ecosystems – definitions, theories, and empirical evidence,” Biogeosciences 15, 5929–5949.https://doi.org/10.5194/bg-15-5929-2018

  78. K. Mason-Jones, P. Vrehen, K. Koper, J. Wang, W. P. Van der Putten, and G. F. Veen, “Short-term temperature history affects mineralization of fresh litter and extant soil organic matter, irrespective of agricultural management,” Soil Biol. Biochem. 150, 10895 (2020). https://doi.org/10.1016/j.soilbio.2020.107985

    Article  Google Scholar 

  79. Y. Pan, R. A. Birdsey, J. Fang, R. Houghton, P. E. Kauppi, W. A. Kurz, O. L. Phillips, et al., “A large and persistent carbon sink in the world’s forests,” Science 333, 988–993 (2011). https://doi.org/10.1126/science.1201609

    Article  Google Scholar 

  80. N. Perveen, S. Barot, G. Alvarez, K. Klumpp, R. Martin, A. Rapaport, D. Herfurth, F. Louault, and S. Fontaine, “Priming effect and microbial diversity in ecosystem functioning and response to global change: a modeling approach using the SYMPHONY model,” Glob. Chang. Biol. 20, 1174–1190 (2014). https://doi.org/10.1111/gcb.12493

    Article  Google Scholar 

  81. Q. Qin, H. Wang, X. Lei, X. Li, Y. Xie, and Y. Zheng, “Spatial variability in the amount of forest litter at the local scale in northeastern China: kriging and cokriging approaches to interpolation,” Ecol. Evol. 10, 778–790 (2019). https://doi.org/10.1002/ece3.5934

    Article  Google Scholar 

  82. J. Rühlmann, “A new approach to estimating the pool of stable organic matter in soil using data from long-term field experiments,” Plant Soil 213, 149–160 (1999). https://doi.org/10.1023/A:1004552016182

    Article  Google Scholar 

  83. R. Sievänen, O. Salminen, A. Lehtonen, P. Ojanen, J. Liski, K. Ruosteenoja, and M. Tuomi, “Carbon stock changes of forest land in Finland under different levels of wood use and climate change,” Ann. For. Sci. 71, 255–265 (2013). https://doi.org/10.1007/s13595-013-0295-7

    Article  Google Scholar 

  84. V. Shanin and O. Chertov, “Simulating the effect of forest fires, cuttings, and increased nitrogen deposition on dynamics of key forest ecosystem properties and processes in Russian North-West,” Eur. J. For. Res. 139, 665–683 (2020). https://doi.org/10.1007/s10342-020-01277-5

    Article  Google Scholar 

  85. V. Shanin, A. Juutinen, A. Ahtikoski, P. Frolov, O. Chertov, J. Rämö, A. Lehtonen, R. Laiho, P. Mäkiranta, M. Nieminen, A. Laurén, S. Sarkkola, T. Penttilä, B. Ťupek, and R. Mäkipää, “Simulation modelling of greenhouse gas balance in continuous-cover forestry of Norway spruce stands on nutrient-rich drained peatlands,” For. Ecol. Manage. 496, 119479 (2021). https://doi.org/10.1016/j.foreco.2021.119479

    Article  Google Scholar 

  86. E. Shorohova and E. Kapitsa, “Stand and landscape scale variability in the amount and diversity of coarse woody debris in primeval European boreal forests,” For. Ecol. Manage. 356, 273–284 (2015). https://doi.org/10.1016/j.foreco.2015.07.005

    Article  Google Scholar 

  87. A. Stevens and B. van Wesemael, “Soil organic carbon dynamics at the regional scale as influenced by land use history: a case study in forest soils from southern Belgium,” Soil Use Manag. 24, 69–79 (2008). https://doi.org/10.1111/j.1475-2743.2007.00135.x

    Article  Google Scholar 

  88. R. Valentini, G. Matteucci, A. J. Dolman, E.-D. Schulze, C. Rebmann, E. J. Moors, A. Granier, P. Gross, et al., “Respiration as the main determinant of carbon balance in European forests,” Nature 404, 861–865 (2000). https://doi.org/10.1038/35009084

    Article  Google Scholar 

  89. P. A. W. Van Hees, D. L. Jones, R. Finlay, D. L. Godbold, and U. S. Lundström, “The carbon we do not see—the impact of low molecular weight compounds on carbon dynamics and respiration in forest soils: a review,” Soil Biol. Biochem. 37, 1–13 (2005). https://doi.org/10.1016/j.soilbio.2004.06.010

    Article  Google Scholar 

  90. M. Xu and Y. Qi, “Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California,” Glob. Chang. Bio-l. 7, 667–677 (2001). https://doi.org/10.1046/j.1354-1013.2001.00435.x

    Article  Google Scholar 

  91. X. Zhou, C. Peng, Q.-L. Dang, J. Sun, H. Wu, and D. Hua, “Simulating carbon exchange in Canadian boreal forests. I. Model structure, validation, and sensitivity analysis,” Ecol. Modell. 219, 287–299 (2008). https://doi.org/10.1016/j.ecolmodel.2008.07.011

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The background for this study is the long-term research collaboration of the authors with O.G. Chertov and P.Ya. Grabarnik, to whom we are very grateful. We thank the administration of the Prioksko-Terrasnyi Nature Reserve for the opportunity of field studies there. The analytic chemical data used in the work were obtained in different years at the Joint Access Center of the Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences.

Funding

The work was performed under the most important innovative project of a national significance titled Development of a System for Ground-Based and Remote Monitoring of Carbon Pools and Greenhouse Gas Fluxes in the Territory of the Russian Federation and Creation of Accounting Data Systems on the Fluxes of Climatically Active Substances and Carbon Budget in Forests and Other Terrestrial Ecosystems (no. 123030300031-6)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Priputina.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by G. Chirikova

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priputina, I.V., Frolov, P.V., Shanin, V.N. et al. Simulation Modeling of Forest Soil Respiration: Case Study of Entic Carbic Podzol under Coniferous–Broadleaved Forest in the South of Moscow Oblast. Eurasian Soil Sc. 56, 1291–1303 (2023). https://doi.org/10.1134/S1064229323601221

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323601221

Keywords:

Navigation