Skip to main content
Log in

The role of the interaction between signaling protein domains and of the complexes of signaling proteins in apoptosis initiation

  • Cell Biology
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The data of recent years on apoptosis were revisited to demonstrate that the functioning of signaling proteins during apoptosis depends on their localization on mitochondria or in the cytosol. The major effect of signaling proteins depends on the number of pro-and antiapoptotic domains in their structure, which is observed after cleavage, oligomerization, and complexing with other proteins. The structure of known signaling proteins was analyzed. The effect of complexing with phosphatases and 14-3-3 proteins was demonstrated by the example of Bad protein. Detailed data on the proapoptotic factors and their inhibitors affecting caspase activation and released from mitochondria with cytochrome c are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ayllon, V., Cayla X., Garsia A. et al. Bcl-2 Targets Protein Phosphatase 1 alpha to Bad, J. Immunol., 2001, vol. 166, no. 12, pp. 7345–7352.

    PubMed  CAS  Google Scholar 

  • Blink, E., Maianski, N.A., Alnemri, E.S., et al., Intramitochondrial Serine Protease Activity of Omi/HtrA2 Is Required for Caspase-Independent Cell Death of Human Neutrophils, Cell Death. Differ., 2004, vol. 11, pp. 937–939.

    Article  PubMed  CAS  Google Scholar 

  • Bossy-Wetzel, E., Newmeyer, D.D., and Green, D.R., Mitochondrial Cytochrome C Release in Apoptosis Occurs upstream of DEVD-Specific Caspase Activation and Independently of Mitochondrial Transmembrane Depolarization, EMBO J., 1998, vol. 17, no. 1, pp. 37–49.

    Article  PubMed  CAS  Google Scholar 

  • Bratton, S.B., Walker, G., Roberts, D.L., et al., Caspase-3 Cleaves Apaf-1 into an Appropriately Oligomerized and Biologically Inactive Approximately 1.5 MDa Apoptosome Complex, Cell Death Differ., 2001, vol. 8, no. 4, pp. 425–433.

    Article  PubMed  CAS  Google Scholar 

  • Burgering, B.M. and Kops, G.J., Cell Cycle and Death Control: Long Life Forkheads, Trends Biochem. Sci., 2002, vol. 27, no. 5, pp. 352–360.

    Article  PubMed  CAS  Google Scholar 

  • Cario, G., Skokowa, J., Wang, Z., et al., Heterogenous Expression Pattern of Pro-and Anti-Apoptotic Factors in Myeloid Progenitor Cells of Patients with Severe Congenital Neutropenia Treated with Granulocyte Stimulating Factor, Br. J. Haematol., 2005, vol. 129, no. 2, pp. 275–258.

    Article  PubMed  Google Scholar 

  • Chai, J., Du, C., Wu, J.-W., et al., Structural and Biochemical Basis of Apoptotic Activation by SMAC/Diablo, Nature, 2000, vol. 406, no. 6798, pp. 855–862.

    Article  PubMed  CAS  Google Scholar 

  • Chang, D.W., Zheng, X., Pan, Y., et al., C-FlipL Is a Dual Function Regulator for Caspase-8 Activation and CD95-Mediated Apoptosis, EMBO J., 2000, vol. 21, no. 14, pp. 3704–3714.

    Article  Google Scholar 

  • Chen, Q., Chai, Y., Mazumder, S., et al., Double Steps of Cytochrome C Appearance under ROS Increase, Sci. World J., 2001, vol. 1, no. 1, pp. 142–144.

    Google Scholar 

  • Chiang, C.W., Harris, G., Ellig, C., et al., Protein Phosphatase 2A Activates the Proapoptotic Function of BAD in Interleukin-3-Dependent Lymphoid Cells by a Mechanism Requiring 14-3-3 Dissociation, Blood, 2001, vol. 97, no. 5, pp. 1289–1297.

    Article  PubMed  CAS  Google Scholar 

  • Chiang, C.W., Kanies C., Kim K.W., et al., Protein Phosphatase 2A Dephosphorylation of Phosphoserine 112 Plays the Gatekeeper Role for BAD-Mediated Apoptosis, Mol. Cell. Biol., 2003, vol. 23, no. 18, pp. 6350–6362.

    Article  PubMed  CAS  Google Scholar 

  • Clem, R.J., Cheng, E.H., Karp, C.L., et al., Modulation of Cell Death by Bcl-XL through Caspase Interaction, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, no. 2, pp. 554–559.

    Article  PubMed  CAS  Google Scholar 

  • Clem, R.J., Sheu, T.T., and Richter, B.W., C-IAPs Is Cleavled to Produce a Pro-Apoptitic C-Terminal Fragment, J. Biol. Chem., 2001, vol. 276, no. 10, pp. 7601–7608.

    Article  Google Scholar 

  • Cook, S.A., Novikov, M.S., Ahn, Y., et al., A20 Is Dynamically Regulated in the Heart and Inhibits the Hypertrophic Response, Circulation, 2003, vol. 108, no. 6, pp. 664–667.

    Article  PubMed  Google Scholar 

  • Cowburn, A.S., Cadwallader, K.A., Reed, B.J., et al., Role of PI3-Kinase Bad Phosphorilation and Altered Transcription in Cytokine-Mediated Neutrophil Survival, Blood, 2002, vol. 100, no. 7, pp. 2607–2616.

    Article  PubMed  CAS  Google Scholar 

  • Datta, S.R., Katsov, A., Hu, L., et al., 14-3-3 Proteins and Survival Kinases Cooperate to Inactivate BAD by BH3 Domain Phosphorylation, Mol. Cell, 2000, vol. 6, no. 1, pp. 41–51.

    Article  PubMed  CAS  Google Scholar 

  • Datta, S.R., Ranger, A.M., Lin, M.Z., et al., Survival Factor-Mediated BAD Phosphorylation Raises the Mitochondrial Threshold for Apoptosis, Dev. Cell, 2002, vol. 3, no. 5, pp. 631–643.

    Article  PubMed  CAS  Google Scholar 

  • Davies, S.P., Reddy, H., Caivano, M., and Cohen, P., Specificity and Mechanism of Action of Some Commonly Used Protein Kinase Inhibitors, Biochem. J., 2000, vol. 351, pp. 95–106.

    Article  PubMed  CAS  Google Scholar 

  • Desagher, S., Osen-Sand, A., Montessuit, S., et al., Phosphorylation of Bid by Casein Kinases and Regulation Its Cleavage by Caspase 8, Mol. Cell, 2001, vol. 8, no. 3, pp. 601–611.

    Article  PubMed  CAS  Google Scholar 

  • Deveraux, Q.L., Leo, E., and Stennicke, H.R., Cleavage of Human Inhibitor of Apoptosis Protein XIAP Results in Fragments with Distinct Specifities for Caspases, Blood, 1999, vol. 94, no. 10, pp. 3864–3870.

    Google Scholar 

  • Domina, A.M., Smith, J.H., and Craig, R.W., Myeloid Cell Leukemia 1 Is Phosphorylated through Two Distinct Pathways, One Associated with Extracellular Signal-Regulated Kinase Activation and the Other with G2/M Accumulation or Protein Phosphatase 1/2A Inhibition, J. Biol. Chem., 2000, vol. 275, no. 28, pp. 21688–21694.

    Article  PubMed  CAS  Google Scholar 

  • Dramsi, S., Scheid, M.P., Maiti, A., et al., Identification of a Novel Phosphorylation Site, Ser-170, as a Regulator of Bad Proapoptotic Activity, J. Biol. Chem., 2002, vol. 277, no. 8, pp. 6399–6405.

    Article  PubMed  CAS  Google Scholar 

  • Du, C., Fang, M., Li, Y., and Wang, X., Smac, A Mitochondrial Protein That Promotes Cytochrome C-Dependent Caspase Activation by Eliminating IAP Inhibition, Cell, 2000, vol. 102, no. 1, pp. 33–42.

    Article  PubMed  CAS  Google Scholar 

  • Edwards, S.W., Derouet, M., Howse, M., and Moots, R.J., Regulation of Neutrophil Apoptosis by Mcl-1, Biochem. Soc. Trans., 2004, vol. 32, no. 3, pp. 489–492.

    Article  PubMed  CAS  Google Scholar 

  • Esposti, M.D., Erler, J.T., Hickman, J.A., and Dive, C., Bid, A Widely Expressed Proapoptotic Protein of the Bcl-2 Family, Displays Lipid Transfer Activity, Mol. Cell Biol., 2001, vol. 21, no. 21, pp. 268–276.

    Article  Google Scholar 

  • Esposti, M.D., Mitochondria in Apoptosis: Past, Present and Future, Biochem. Soc. Trans., 2004, vol. 32, pp. 493–495.

    Article  PubMed  Google Scholar 

  • Fang, L.W., Tai, T.S., Yu, W.N., et al., Phosphatidylinositide 3-Kinase Priming Couples c-FLIP to T Cell Activation, J. Biol. Chem., 2004, vol. 279, no. 1, pp. 13–18.

    Article  PubMed  CAS  Google Scholar 

  • Gajkowska, B. and Wojewodska, U., A Novel Embedment-Free Immunoelectron Microscopy Technique Reveals Association of Apoptosis-Regulating Proteins with Subcellular Structures, Histochem. J., 2002, vol. 34, nos. 8–9, pp. 441–446.

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa, T., Suzuki, K., Sakamoto, Ch., et al., Expression of the Inhibitor of Apoptosis (IAP) Family Members in Human Neutrophils: Up-Regulation of CIAP2 by Granulocyte Colony-Stimulating Factor and Overexpression of CIAP2 in Chronic Neutrophilic Leukemia, Blood, 2003, vol. 101, no. 3, pp. 1164–1171.

    Article  PubMed  CAS  Google Scholar 

  • Haupt, S., Berger, M., Goldberg, Z., and Haupt, Y., Apoptosis—The p53 Network, J. Cell Sci., 2003, vol. 116, no. 20, pp. 4077–4085.

    Article  PubMed  CAS  Google Scholar 

  • He, K.L. and Ting, A.T., A20 Inhibits Tumor Necrosis Factor (TNF) Alpha-Induced Apoptosis by Disrupting Recruitment of TRADD and RIP to the TNF Receptor 1 Complex in Jurkat T Cells, Mol. Cell Biol., 2002, vol. 22, no. 17, pp. 6034–6040.

    Article  PubMed  CAS  Google Scholar 

  • Hirai, I. and Wang, H.G., Survival-Factor-Induced Phosphorylation of Bad Results in Its Dissociation from Bcl-XL but Not Bcl-2, Biochem. J., 2001, vol. 359, no. 2, pp. 345–352.

    Article  PubMed  CAS  Google Scholar 

  • Hirotani, M., Zhang, Y., Fujita, N., et al., NH2-Terminal BH4 Domain of Bcl-2 Is Functional for Heterodimerization with Bax and Inhibition of Apoptosis, J. Biol. Chem., 1999, vol. 274, no. 29, pp. 20415–20420.

    Article  PubMed  CAS  Google Scholar 

  • Huang, D.C. and Strasser, A., BH3-Only Proteins-Essential Initiators of Apoptotic Cell Death, Cell, 2000, vol. 103, no. 6, pp. 839–842.

    Article  PubMed  CAS  Google Scholar 

  • Huang, Y., Rich, R.L., Myszka, D.G., and Wu, H., Requirement of Both the BIR2 and BIR3 Domains for the Relief of XIAP-Mediated Caspase Inhibition by Smac, J. Biol. Chem., 2003, vol. 278, no. 49, pp. 49517–49522.

    Article  PubMed  CAS  Google Scholar 

  • Inoshita, S., Takeda, K., Hatai, T., et al., Phosphorilation and Inactivation of Myeloid Cell Leukemia 1 by JNK in Response to Oxidative Stress, J. Biol. Chem., 2002, vol. 277, no. 46, pp. 43730–43734.

    Article  PubMed  CAS  Google Scholar 

  • Jonsson, G., Paulie, S., and Grandien, A., High Level of CFLIP Correlates with Resistance to Death Receptor-Induced Apoptosis in Bladder Carcinoma Cells, Anticancer Res., 2003, vol. 23, no. 2, pp. 1213–1218.

    PubMed  Google Scholar 

  • Kang, C.M., Suh, Y., Jang, I.S., and Park, S.C., Thymidine-Dependent Attenuation of the Mitochondrial Apoptotic Pathway in Adenosine-Induced Apoptosis of HL-60 Cells, J. Cancer Res. Clin. Oncol., 2001, vol. 127, no. 9, pp. 570–576.

    Article  PubMed  CAS  Google Scholar 

  • Kerr, J.F.R., Wyllie, A.H., and Currie, A.R., Apoptosis: A Basic Biological Phenomenon with Wide-Ranging Implications in Tissue Kinetics, Br. J. Cancer, 1972, vol. 26, no. 4, pp. 239–257.

    PubMed  CAS  Google Scholar 

  • Ko, J.K., Choi, K.H., Kim, H.J., et al., Conversion of Bfl-1, An Anti-Apoptotic Bcl-2 Family Protein, to a Potent Pro-Apoptotic Protein by Fusion with Green Fluorescent Protein (GFP), FEBS Lett., 2003, vol. 551, nos. 1–3, pp. 29–36.

    Article  PubMed  CAS  Google Scholar 

  • Konishi, Y., Lehtinen, M., Donovan, N., and Bonni, A., Cdc2 Phosphorylation of BAD Links the Cell Cycle to the Cell Death Machinery, Mol. Cell, 2002, vol. 9, no. 5, pp. 1005–1016.

    Article  PubMed  CAS  Google Scholar 

  • Leblanc, V., Dery, M.C., Shooner, C., and Asselin, E., Opposite Regulation of XIAP and Smac/DIABLO in the Rat Endometrium in Response to 17beta-Estradiol at Estrus, Reprod. Biol. Endocrinol., 2003, vol. 1, no. 1, pp. 59–69.

    Article  PubMed  Google Scholar 

  • Lorick, K.L., Jensen, J.P., Fang, S., et al., RING Fingers Mediate Ubiquitin-Conjugating Enzime E2-Dependent Ubiquitination, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, no. 20, pp. 11364–11369.

    Article  PubMed  CAS  Google Scholar 

  • Luetjens, C.M., Kogel, D., Reimertz, C., et al., Multiple Kinetics of Mitochondrial Cytochrome c Release in Drug-Induced Apoptosis, Mol. Pharmacol., 2001, vol. 60, no. 5, pp. 1008–1019.

    PubMed  CAS  Google Scholar 

  • Maianski, N.A., Roos, D., and Kuijpers, T.W., Tumor Necrosis Factor Alpha Induces a Caspase-Independent Death Pathway in Human Neutrophils, Blood, 2003, vol. 101, no. 5, pp. 1987–1995.

    Article  PubMed  CAS  Google Scholar 

  • Malewicz, M., Zeller, N., Yilmaz, Z.B., and Weih, F., NF-Kappa B Controls the Balance Between Fas and Tumor Necrosis Factor Cell Death Pathways during T Cell Receptor-Induced Apoptosis via the Expression of Its Target Gene A20, J. Biol. Chem., 2003, vol. 278, no. 35, pp. 32825–32833.

    Article  PubMed  CAS  Google Scholar 

  • Martins, L.M., The Serine Protease Omi/HtrA2: A Second Mammalian Protein with a Reaper-like Function, Cell Death Differ., 2002, vol. 9, no. 7, pp. 699–701.

    Article  PubMed  CAS  Google Scholar 

  • Masters, S.C., Yang, H., Datta, S.R., et al., 14-3-3 Inhibits Bad-Induced Cell Death through Interaction with Serine-136, Mol. Pharmacol., 2001, vol. 60, no. 6, pp. 1325–1331.

    PubMed  CAS  Google Scholar 

  • Masters, S.C., Subramanian, R.R., Truong, A., et al., Survival-Promoting Functions of 14-3-3 Proteins, Biochem. Soc. Trans., 2002, vol. 30, no. 4, pp. 360–365.

    Article  PubMed  CAS  Google Scholar 

  • Mayanskii, A.N., Mayanskii, N.A., Zaslavskaya, N.I., et al., Apoptosis of Neutrophils, Immunologiya, 1999, vol. 20, no. 6, pp. 11–20.

    Google Scholar 

  • Michels, J., Johson, P.W., and Packman, G., Mcl-1, Int. J. Biochem. Cell Biol., 2005, vol. 37, no. 2, pp. 267–271.

    Article  PubMed  CAS  Google Scholar 

  • Mortenson, M.M., Schlieman, M.G., Virudalchalam, S., and Bold, R.J., Overexpression of Bcl-2 Results in Activation of the Akt/NF-KB Cell Survival Pathway, J. Surg. Res., 2003, vol. 114, no. 2, pp. 302–310.

    Article  Google Scholar 

  • Nicholson, D.W., Baiting Death Inhibitor, Nature, 2001, vol. 410, no. 6824, pp. 33–34.

    Article  PubMed  CAS  Google Scholar 

  • Opferman, J.T., Letai, A., Beard, C., et al., Development and Maintenance of T and B Lymphocytes Requires Antiapoptotic Mcl-1, Nature, 2003, vol. 426, no. 6967, pp. 671–674.

    Article  PubMed  CAS  Google Scholar 

  • Pratt, M.A.C., Niu, M.-Y., Bcl-2 Controls Caspase Activation Following a p53-Dependent Cyclin D1-Induced Death Signal, J. Biol. Chem., 2003, vol. 278, no. 18, pp. 14211–14229.

    Google Scholar 

  • Rehm, M., Dussmann, H., and Prehn, J.H., Real-Time Single Cell Analysis of Smac/DIABLO Release during Apoptosis, J. Cell Biol., 2003, vol. 162, no. 6, pp. 1031–1043.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez, J. and Lazebnik, Y., Caspase-9 and Apaf-1 Form an Active Holoenzyme, Genes Dev., 1999, vol. 13, no. 24, pp. 3179–3184.

    Article  PubMed  CAS  Google Scholar 

  • Rosa, J., Canovas, P., and Islam, A., Survivin Modulates Microtubule Dynamics and Nucleation throughout the Cell Cycle, Mol. Biol. Cell, 2006, vol. 17, no. 3, pp. 1483–1493.

    Article  PubMed  CAS  Google Scholar 

  • Ruvolo, P.P., Deng, X., Ito, T., et al., Ceramide Induces Bcl-2 Dephosphorilation via a Mechanism Involving Mitochondrial PP2A, J. Biol. Chem., 1999, vol. 274, no. 29, pp. 20296–20300.

    Article  PubMed  CAS  Google Scholar 

  • Sabbatini, P. and McCormik, F., PI3k and PKB/Akt Delay Onset of p53-Mediated Trascriptionally Dependent Apoptosis, J. Biol. Chem., 1999, vol. 274, no. 34, pp. 24263–24269.

    Article  PubMed  CAS  Google Scholar 

  • Saito, A., Hayashi, T., Okuno, S., et al., Interaction between XIAP and Smac/DIABLO in the Mouse Brain after Transient Focal Cerebral Ischemia, J. Cereb. Blood Flow Metab., 2003, vol. 23, no. 9, pp. 1010–1019.

    Article  PubMed  CAS  Google Scholar 

  • Samuilov, A.D., Oleskin, O.V., and Lagunova, E.M., Programmed Cell Death, Biokhimiya, 2000, vol. 65, no. 8, pp. 1029–1045.

    Google Scholar 

  • Sano, J., Oguma, K., Kano, R., et al., High Expression of Bcl-xL in Delayed Apoptosis of Canine Neutrophils Induced by Lipopolysaccharide, Res. Vet. Sci., 2005, vol. 78, no. 2, pp. 183–187.

    Article  PubMed  CAS  Google Scholar 

  • Sanz, C., Benito, A., Silva, M., et al., The Expression of Bcl-XL Is Downregulated during Differentiation of Human Hematopoietic Progenitor Cells along the Granulocyte but Not the Monocyte/Macrophage Lineage, Blood, 1997, vol. 89, no. 9, pp. 2199–2204.

    Google Scholar 

  • Schimmer, A.D., Hedley, D.W., Pham, N.A., et al., BAD Induces Apoptosis in Cells Over-Expressing Bcl-2 or Bcl-XL without Loss of Mitochondrial Membrane Potential, Leuk. Lymphoma, 2001, vol. 42, no. 3, pp. 429–443.

    PubMed  CAS  Google Scholar 

  • Schurmann, A., Mooney, A.F., Sanders, L.C., et al., p21-Activated Kinase 1 Phosphorylates the Death Agonist Bad and Protects Cells from Apoptosis, Mol. Cell. Biol., 2000, vol. 20, no. 2, pp. 453–461.

    Article  PubMed  CAS  Google Scholar 

  • Simmons, T.D., Slater, K.J., and Crouch, S.P., Changes in Intracellular ADP: ATP Ratios as a Marker of Apoptosis, Sci. World J., 2001, vol. 1, no. Suppl. 3, p. 58.

    Google Scholar 

  • Slee, E.A., Hartle, M.T., Kluck, R.M., et al., Ordering the Cytochrome C-Initiated Caspase Cascade: Hierarchical Activation of Caspase-2,-3,-6,-7,-8 and-10 in a Caspase-9-Dependent Manner, J. Cell Biol., 1999, vol. 144, no. 2, pp. 281–292.

    Article  PubMed  CAS  Google Scholar 

  • Srinivasula, R.K., Mi, Q.S., Hardwick, J.M., et al., Deletion of the Loop Region of Bcl-2 Completely Blocks Paclitaxel-Induced Apoptosis, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 3775–3780.

    Article  Google Scholar 

  • Srinivasula, S.M., Hedge, R., and Saleh, A., A Conserved XIAP-Interaction Motif in Caspase 9 and Smac / Diablo Regulates Caspase Activity and Apoptosis, Nature, 2001, vol. 410, no. 6824, pp. 112–116.

    Article  PubMed  CAS  Google Scholar 

  • Srinivasula, S.M., Gupta, S., Datta, P., et al., Inhibitors of Apoptosis Proteins Are Substrates for the Mitochondrial Serine Protease Omi/HtrA2, J. Biol. Chem., 2003, vol. 278, no. 34, pp. 31469–31472.

    Article  PubMed  CAS  Google Scholar 

  • Sundararajan, R., Cuconati, A., Nelson, D., and White, E., TNF-Alpha Induces Bax-Bak Interaction and Apoptosis Which Is Inhibited by Adenovirus E1B 19K, J. Biol. Chem., 2001, vol. 276, no. 48, pp. 45120–45127.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, Y., Imai, Y., Nakayama, H., et al., A Serine Protease, HtrA2, Is Released from the Mitochondria and Interacts with XIAP, Inducing Cell Death, Mol. Cell, 2001, vol. 8, no. 3, pp. 613–621.

    Article  PubMed  CAS  Google Scholar 

  • Tadros, A., Hughes, D.P., Dunmore, B.J., and Brindle, N.P., ABIN-2 Protects Endothelial Cells from Death and Has a Role in the Antiapoptotic Effect of Angiopoietin-1, Blood, 2003, vol. 102, no. 13, pp. 4407–4409.

    Article  PubMed  CAS  Google Scholar 

  • Tan, K., Tan, K.M., and Yu, V., A Novel BH3-Like Domain in BID Is Required for Intramolecular Interaction and Auto-inhibition of Pro-Apoptotic Activity, J. Biol. Chem., 1999, vol. 274, no. 34, pp. 23687–23690.

    Article  PubMed  CAS  Google Scholar 

  • Tan, Y., Demeter, M.R., Ruan, H., and Comb, M.J., BAD Ser-155 Phosphorylation Regulates BAD/Bcl-XL Interaction and Cell Survival, J. Biol. Chem., 2000, vol. 275, no. 33, pp. 25865–25869.

    Article  PubMed  CAS  Google Scholar 

  • Terradillos, O., Montessuit, S., Huang, D.C., and Martinou, J.C., Direct Addition of BimL to Mitochondria Does Not Lead to Cytochrome C Release, FEBS Lett., 2002, vol. 522, nos. 1–3, pp. 29–34.

    Article  PubMed  CAS  Google Scholar 

  • Townsend, P.A., Stephanou, A., Packham, G., and Latchman, D.S., Bag-1: A Multifunctional Prosurvival Molecule, Int. J. Biochem. Cell Biol., 2005, vol. 37, no. 2, pp. 251–259.

    Article  PubMed  CAS  Google Scholar 

  • Tyazhelova, V.G., Mekhanizmy aktivatsii limfotsitov perifericheskoi krovi (The Mechanisms of Peripheral Lymphocyte Activation), Moscow: Nauka, 2003a.

    Google Scholar 

  • Tyazhelova, V.G., Pro-and Antiapoptotic Factors during the Activation of Peripheral Lymphocytes, Uspekhi Biol. Nauk, 2003b, no. 5, pp. 495–505.

  • Tyazhelova, V.G., TRAIL-and WNT-Signaling in Apoptosis, Immunologiya, 2005, vol. 26, no. 6, pp. 377–384.

    Google Scholar 

  • Valentijn, A.J., Zouq, N., and Glimore, A.P., Anoikis, Biochem. Soc. Trans., 2004, vol. 32, no. 3, pp. 421–425.

    Article  PubMed  CAS  Google Scholar 

  • Vaux, D.L. and Krosmeyer, S.J., Cell Death in Development, Cell, 1999, vol. 96, no. 2, pp. 243–254.

    Article  Google Scholar 

  • Verhagen, A.M. and Vaux, D.L., Cell Death Regulation by the IAP Antagonist Diablo/Smac, Apoptosis, 2000, vol. 7, no. 2, pp. 163–166.

    Article  Google Scholar 

  • Verhagen, A.M., Ekert, P.G., Pakusch, M., et al., Identification of Diablo, A Mammalian Protein That Promotes Apoptosis by Binding to and Antagonizing IAP Proteins, Cell, 2000, vol. 102, no. 1, pp. 43–53.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H.G. and Reed, J.S., Bcl-2, Raf-1 and Mitochondrial Apoptosis, Histol. Histopathotol., 1998, vol. 13, no. 2, pp. 521–530.

    CAS  Google Scholar 

  • Wang, J.-M., Ming-Zong, L., and Hsin-Fang, Y.-Y., Interleukin-3 Stimulation of mcl-1 Gene Transcription Involves Activation of the PU.1 Transcription Factor through a p38 Mitogen-Activated Protein Kinase-Dependent Pathway, Mol. Cell Biol., 2003, vol. 23, no. 6, pp. 1896–1909.

    Article  PubMed  CAS  Google Scholar 

  • Wang, N.S., Unkila, M.T., Reineks, E.Z., and Distelhorst, C.W., Transient Expression of Wild-Type or Mitochondrially Targeted Bcl-2 Induces Apoptosis while Transient Expression of ER-Targeted Bcl-2 Is Protective against Bax Induced Cell Death, J. Biol. Chem., 2001, vol. 276, no. 47, pp. 44117–44148.

    Article  PubMed  CAS  Google Scholar 

  • Wilker, E. and Yaffe, M.B., 14-3-3 Proteins—A Focus on Cancer and Human Disease, J. Mol. Cell, 2004, vol. 37, no. 3, pp. 633–642.

    Article  CAS  Google Scholar 

  • Willie, A.H., Kerr, J.F., and Currie, A.R., Cell Death: The Significance of Apoptosis, Int. Rev. Cytol., 1980, vol. 68, pp. 251–306.

    Article  Google Scholar 

  • Wills, S.N. and Adams, J.M., Life in the Balance: How BH3 Only Proteins Induce Apoptosis, Curr. Opin. Cell Biol., 2005, vol. 17, no. 6, pp. 617–625.

    Article  CAS  Google Scholar 

  • Wu, Ch., Chai, J., Suber, T., et al., Structural Basis of IAP Recognition by Smac/Diablo, Nature, 2000, vol. 408, no. 6815, pp. 1008–1012.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Y., Fang, S., Jensen, J.P., et al., Ubiquitin Protein Ligase Activity of IAPs and Their Degradation in Proteasomes in Response to Apoptotic Stimuli, Science, 2000, vol. 288, no. 5467, pp. 874–877.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, X.M., Liu, Y., Payne, G., et al., Growth Factors Inactivate the Cell Death Promoter BAD by Phosphorylation of Its BH3 Domain on Ser155, J. Biol. Chem., 2000, vol. 275, no. 32, pp. 25046–25051.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.G. Tyazhelova, 2007, published in Izvestiya Akademii Nauk, Seriya Biologicheskaya, 2007, No. 2, pp. 133–144.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyazhelova, V.G. The role of the interaction between signaling protein domains and of the complexes of signaling proteins in apoptosis initiation. Biol Bull Russ Acad Sci 34, 99–109 (2007). https://doi.org/10.1134/S106235900702001X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106235900702001X

Keywords

Navigation