Skip to main content
Log in

Effect of abscisic acid on the resistance of cucumber seedlings to combined exposure to high temperature and chloride

  • Short Communications
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The effect of abscisic acid (ABA) on heat and salt resistance of cucumber seedlings exposed (consecutively or simultaneously) to high temperature and chloride was studied. Exogenous ABA proved to additionally increase the heat and salt resistance after both consecutive and simultaneous exposure of cucumber seedlings to 38∞N and NaCl. The involvement of this hormone in the common (nonspecific) mechanisms increasing plant resistance to the studied environmental factors is concluded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aleksandrov, V.Ya., Cytophysiological and Cytoecological Studies on Plant Cell Resistance to High Temperatures, Tr. Botan. In-Ta AN SSSR, 1963, vol. 4, pp. 234–280.

    Google Scholar 

  • Alexieva, V., Ivanov, S., Sergiev, I., and Karanov, E., Interaction between Stresses, Bulg. J. Plant. Physiol., 2003, vol. XXIX, pp. 1–17.

    Google Scholar 

  • Balagurova, N.I., Akimova, T.V., and Titov, A.F., The Effect of Local Cooling of Cucumber and Wheat Seedlings on Various Kinds of Stress Resistance of Their Leaves and Roots, Fiziol. Rastenii, 2001, vol. 48, pp. 113–118.

    Google Scholar 

  • Brilkina, A.A., Prooxidant-Antioxidant Balance in Plants Exposed to Hyperthermia and Exogenous Phytohormones, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Nizhnii Novgorod: Nizhegor. Univ., 2002.

    Google Scholar 

  • Chen, C.C.S. and Plant, A.L., Salt-Induced Protein Synthesis in Tomato Roots: The Role of ABA, J. Exp. Bot., 1999, vol. 50, pp. 677–687.

    Article  CAS  Google Scholar 

  • Chirkova, T.V., Fiziologicheskie osnovy ustoichivosti rastenii (Physiological Bases of Plant Resistance), St. Petersburg: St. Petersburg State Univ., 2002.

    Google Scholar 

  • Cowan, A.K., Richardson, G.R., and Maurel, J.C.G., Stress-Induced Abscisic Acid Transients and Stimulus-Response Coupling, Physiol. Plant., 1997, vol. 100, pp. 491–499.

    Article  CAS  Google Scholar 

  • Gong, M., Li, Y.-J., and Chen, S.Z., Abscisic Acid Induced Thermotolerance in Maize Seedlings Is Mediated by Ca2+ and Associated with Antioxidant Systems, J. Plant Physiol., 1998, vol. 153, pp. 488–496.

    CAS  Google Scholar 

  • Grillo, S., Leone, A., Xu, Y., et al., Control of Osmotin Gene Expression by ABA and Osmotic Stress in Vegetative Tissues of Wild-Type and ABA-Deficient Mutants of Tomato, Physiol. Plant., 1995, vol. 93, pp. 498–504.

    Article  CAS  Google Scholar 

  • Gueta-Dahan, Y., Yaniv, Z., Zilinskas, B.A., and Ben-Hayyim, G., Salt and Oxidative Stress: Similar and Specific Responses and Their Relation to Salt Tolerance in Citrus, Planta, 1997, no. 4, pp. 460–469.

  • Hale, H.B., Cross Adaptation, Environ. Res., 1969, no. 2, pp. 423–434.

  • Hare, P.D., Cress, W.A., and van Staden, J., Proline Synthesis and Degradation: A Model System for Elucidating Stress-Related Signal Transduction, J. Exp. Bot., 1999, vol. 50, pp. 413–434.

    Article  CAS  Google Scholar 

  • Jennings, P. and Saltveit, M.E., Temperature and Chemical Shocks Induce Chilling Tolerance in Germinating Cucumis sativus (Cv. Poinsett 76) Seeds, Physiol. Plant., 1994, vol. 91, pp. 703–707.

    Article  CAS  Google Scholar 

  • Kosakovskaya, I.V. and Maidebura, E.V., Phytohormonal Regulation of Plant Adaptation: The Role of Abscisic Acid in Stress Resistance, Fiziol. Biokh. Kul’t. Rast., 1989, vol. 21, pp. 315–321.

    CAS  Google Scholar 

  • Kuznetsov, V.V. and Shevyakova, N.I., Stress Response of Tobacco Cells to High Temperature and Salinity. Proline Accumulation and Phosphorylation of Polypeptides, Physiol. Plant., 1997, vol. 100, pp. 320–326.

    Article  CAS  Google Scholar 

  • Kuznetsov, Vl.V., Khydyrov, B.T., Roshchupkin, B.V., and Borisova, N.N., General Systems of Cotton Plant Resistance to Salt and High Temperature Stress: Facts and Hypotheses, Fiziol. Rastenii, 1990, vol. 37, pp. 987–996.

    Google Scholar 

  • Kuznetsov, Vl.V., Rakitin, V.Yu., and Zholkevich, V.N., Effects of Preliminary Heat-Shock Treatment on Accumulation of Osmolytes and Drought Resistance in Cotton Plants During Water Deficiency, Physiol. Plant., 1999, vol. 107, pp. 399–406.

    Article  CAS  Google Scholar 

  • Mittler, R., Oxidative Stress, Antioxidants, and Stress Tolerance, Trends Plant Sci., 2002, vol. 9, pp. 405–410.

    Article  Google Scholar 

  • Rizhsky, L., Liang, H., and Mittler, R., The Combined Effect of Drought Stress and Heat Shock on Gene Expression in Tobacco, Plant Physiol., 2002, vol. 130, pp. 1143–1151.

    Article  PubMed  CAS  Google Scholar 

  • Ryu, S.B., Costa, A., Xin, Z., and Li, P.H., Induction of Cold Hardiness by Salt Stress Involved Synthesis of Cold and Abscisic Acid-Responsive Proteins in Potato (Solanum commersonii Dun.), Plant Cell Physiol., 1995, vol. 36, pp. 145–151.

    Google Scholar 

  • Sabehat, A., Weiss, D., and Lurie, S., Heat-Shock Proteins and Cross-Tolerance in Plants, Physiol. Plant., 1998, vol. 103, pp. 437–441.

    Article  CAS  Google Scholar 

  • Talanova, V.V., Titov, A.F., Minaeva, S.V., and Soldatov, S.E., Separate and Combined Effect of Salt and Hardening Temperatures on Plants, Fiziol. Rastenii, 1993, vol. 40, pp. 584–588.

    Google Scholar 

  • Talanova, V.V., Titov, A.F., and Boeva, N.P., Abscisic Acid Level in Plant Leaves Changes under the Influence of Cold and Heat Hardening, Fiziol. Rastenii, 1991, vol. 38, pp. 991–997.

    CAS  Google Scholar 

  • Talanova, V.V., Titov, A.F., and Boeva, N.P., Plant Response to Lead Ions and Unfavorable Temperature, Dokl. RSKhA, 1996, no. 5, pp. 5–7.

  • Wei, J.-Z., Tirajoh, A., Effendy, J., and Plant, A.L., Characterization of Salt-Induced Changes in Gene Expression in Tomato (Lycopersicon esculentum) Roots and the Role Played by Abscisic Acid, Plant Sci., 2000, vol. 159, pp. 135–148.

    Article  PubMed  CAS  Google Scholar 

  • Xiong, L., Ishitani, M., and Zhu, J.-K., Interaction of Osmotic Stress, Temperature, and Abscisic Acid in the Regulation of Gene Expression in Arabidopsis, Plant Physiol., 1999, vol. 119, pp. 205–211.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.V. Talanova, L.V. Topchieva, A.F. Titov, 2006, published in Izvestiya Akademii Nauk, Seriya Biologicheskaya, 2006, No. 6, pp. 757–761.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talanova, V.V., Topchieva, L.V. & Titov, A.F. Effect of abscisic acid on the resistance of cucumber seedlings to combined exposure to high temperature and chloride. Biol Bull Russ Acad Sci 33, 619–622 (2006). https://doi.org/10.1134/S1062359006060136

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359006060136

Keywords

Navigation