Skip to main content
Log in

Selection of Internal Standards for Determining Rare-Earth Elements by Microwave Induced Plasma Optical Emission Spectrometry

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Microwave plasma atomic emission spectrometry is used to determine the composition of lanthanum sulfide and europium-doped gadolinium oxide crystals, and also of elements in the melt (tin, boron, and lithium). Calibration dependencies for rare-earth elements were found to be nonlinear and did not meet the required accuracy. The internal standard method was used to minimize errors and linearize calibration dependences. Molecular species N2, \({\text{N}}_{2}^{ + }\), and OH did not affect plasma conditions or interelement influences. Internal standards were selected based on the proximity of their first ionization potential to that of the analytes; Ba, Al, Ga, and In were considered. Using these elements as internal standards enabled the linearization of the calibration dependences, achieving an recovery of 95–105%. The determined total mass of elements was 97–103% of the sample weight, with accuracy confirmed by the standard addition method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Balaram, V., Microchem. J., 2020, vol. 35, p. 105483.

    Article  Google Scholar 

  2. Müller, A., Pozebon, D., and Dressler, V.L., J. Anal. At. Spectrom., 2020, vol. 35, p. 2113.

    Article  Google Scholar 

  3. Williams, C.B., Amais, R.S., Fontoura, B.M., Jones, B.T., Nobrega, J.A., and Donati, G.L., TrAC, Trends Anal. Chem., 2019, vol. 116, p. 151.

    Article  CAS  Google Scholar 

  4. Zhang, Z. and Wagatsuma, K., Spectrochim. Acta, B, 2002, vol. 57, p. 1247.

    Article  Google Scholar 

  5. Polyakova, E.V. and Pelipasov, O.V., Spectrochim. Acta, B, 2020, vol. 173, p. 105988.

    Article  CAS  Google Scholar 

  6. Pelipasov, O.V. and Polyakova, E.V., J. Anal. At. Spectrom., 2020, vol. 35, p. 1389.

    Article  CAS  Google Scholar 

  7. Serrano, R., Grindlay, G., Gras, L., and Mora, J., J. Anal. At. Spectrom., 2019, vol. 34, p. 1611.

    Article  CAS  Google Scholar 

  8. Kamarzin, A.A., Mironov, K.E., Sokolov, V.V., Malovitsky, Yu.N., and Vasil’yeva, I.G., J. Cryst. Growth, 1981, vol. 52, p. 619.

    Article  CAS  Google Scholar 

  9. Nikolaev, R.E., Chernovol, A.M., and Tsygankova, A.R., Inorg. Mater., 2015, vol. 51, p. 88.

    Article  CAS  Google Scholar 

  10. Veber, P., Velázquez, M., Jubera, V., Pechev, S., and Viraphong, O., CrystEngComm, 2011, vol. 13, p. 5220.

    Article  CAS  Google Scholar 

  11. Veber, P., Velázquez, M., Gadret, G., Rytz, D., Peltz, M., and Decourt, R., CrystEngComm, 2015, vol. 17, p. 492.

    Article  CAS  Google Scholar 

  12. Priya, R., Pandey, O.P., and Dhoble, S.J., Opt. Laser Technol., 2021, vol. 135, p. 106663.

    Article  CAS  Google Scholar 

  13. Mosqueda, Y., Pérez-Cappe, E., Ruiz-Hitzky, E., and Aranda, P., Eur. J. Inorg. Chem., 2005, vol. 13, p. 2698.

    Article  Google Scholar 

  14. Mosqueda, Y., Perez-Cappe, E., Arana, E., Longo, P., Aranda, P., and Ruiz-Hitzky, E., J. Solid State Chem., 2006, vol. 179, p. 308.

    Article  CAS  Google Scholar 

  15. Grosman, O. and Turanov, A.N., Anal. Chim. Acta, 1992, vol. 257, p. 195.

    Article  Google Scholar 

  16. Tagle, M.V., Pozebon, D., García, R.H., Pinar, F.C., Rodríguez, M.D.D., and Alfonso, M.P., Spectrosc. Lett., 2011, vol. 44, p. 138.

    Article  CAS  Google Scholar 

  17. Mosqueda, Y., Pomares, M., Pérez-Cappe, E.L., Miranda, A., Fariñas, J.C., and Larrea, M.T., Anal. Bioanal. Chem., 2006, vol. 386, p. 1855.

    Article  CAS  PubMed  Google Scholar 

  18. Kucharkowski, R. and Vogt, C., J. Anal. At. Spectrom., 2002, vol. 17, p. 263.

    Article  CAS  Google Scholar 

  19. Kucharkowski, R., Vogt, C., and Marquardt, D., Fresenius’ J. Anal. Chem., 2000, vol. 366, p. 146.

    Article  CAS  PubMed  Google Scholar 

  20. Varbanova, E. and Stefanova, V., J. Int. Sci. Publ.: Ecol. Saf., 2015, vol. 9, p. 362.

    Google Scholar 

  21. Whitty-Léveillé, L., Turgeon, K., Bazin, C., and Larivière, D., Anal. Chim. Acta, 2017, vol. 961, p. 33.

    Article  PubMed  Google Scholar 

  22. Helmeczi, E., Wang, Y., and Brindle, I.D., Talanta, 2016, vol. 160, p. 521.

    Article  CAS  PubMed  Google Scholar 

  23. Williams, C.B., Jones, B.T., and Donati, G.L., J. Anal. At. Spectrom., 2018, vol. 33, p. 1224.

    Article  CAS  Google Scholar 

  24. Serrano, R., Anticó, E., Grindlay, G., Gras, L., and Fontàs, C., Talanta, 2022, vol. 240, p. 123166.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (project no. 22-43-02079) and the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Polyakova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, P.V., Polyakova, E.V. & Nikolaev, R.E. Selection of Internal Standards for Determining Rare-Earth Elements by Microwave Induced Plasma Optical Emission Spectrometry. J Anal Chem 79, 440–446 (2024). https://doi.org/10.1134/S1061934824040087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934824040087

Keywords:

Navigation