Skip to main content
Log in

Uncertainty of the Results of Electron Probe Microanalysis using a Spectrometer with Wavelength Dispersion in the Study of Geological Samples

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we presented a detailed study on the effect of electron beam diameter, spectral overlapping, and element assay sequence on quantitative uncertainties of electron probe microanalysis. With a fixed electron beam diameter of 1 μm for external standard materials, the sample signal intensities were found to decline with the increasing electron beam diameter from 1 to 300 μm, resulting in a sample concentration bias higher than 2% and even up to 20%. Only when electron beam diameter difference between external standard materials and analyzed samples was less than 20 μm, the concentration bias was negligible. The spectral overlapping interference investigation revealed that in the case of shoulder-peak overlapping it was possible to remove the concentration bias by appropriately choosing L value and background signal picking-up position. However, quantification calibration was mandatory when there existed on-peak spectral overlapping interference. For sphalerite samples, this effect was prominent, and the artificially produced Na2O concentration can be 6.23% (±0.30%, 2σ, n = 12) due to on-peak spectral interference of Zn on Na. Furthermore, because of the on-peak spectral interference of S on Mo, the quantification accuracy of Mo was found to be dependent on the mass fraction of S in the studied samples. We also observed that element assay sequence highly affected the quantification accuracy of geological samples containing alkali. In element composition analysis of albite samples, when using matrix-matched calibration standard, the average Na2O concentration decreased substantially from 11.55 to 5.61% when Na was measured the first and last, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Castaing, R. and Guinier, A., Proc. Conference on Electron Microscopy, Delft, The Netherlands, 1949, p. 60.

  2. Fernandez-Segura, E. and Warley, A., Methods Cell Biol., 2008, vol. 88, no. 88, p. 19.

    Article  CAS  Google Scholar 

  3. Llovet, X., Moy, A., Pinard, P.T., and Fournelle, J.H., Prog. Mater. Sci., 2021, vol. 116, 100818. https://doi.org/10.1016/j.pmatsci.2021.100818

    Article  Google Scholar 

  4. Marinenko, R.B., in Electron Probe Quantitation, Heinrich, K.F.J., and Newbury, D.E., Eds., Boston: Springer, 1991, p. 251.

    Google Scholar 

  5. Campbell, L.S., Charnock, J., Dyer, A., Hillier, S., Chenery, S., Stoppa, F., Henderson, C.M.B., Walcott, R., and Rumsey, M., Mineral. Mag., 2016, vol. 80, no. 5, p. 781.

    Article  Google Scholar 

  6. Kearns, S. and Wade, J., in Encyclopedia of the Earth Sciences, Alderton, A. and Elias, S.A., Eds., Amsterdam: Elsevier, 2021, p. 532.

    Google Scholar 

  7. Keil, K. and Fredriksson, K., Geochim. Cosmochim. Acta, 1963, vol. no. 27, p. 939.

  8. Smith, J.V., J. Geol., 1966, vol. 74, no. 1, p. 1.

    Article  CAS  Google Scholar 

  9. Smith, J.V. and Ribbe, P.H., J. Geol., 1966, vol. 74, no. 2, p. 197.

    Article  CAS  Google Scholar 

  10. Harte, B. and Henley, K.J., Nature, 1966, vol. 210, p. 689.

    Article  CAS  Google Scholar 

  11. Zhang, X., Yang, S.Y., Zhao, H., Jiang, S.Y., Zhang, R.X., and Xie, J., J. Earth Sci., 2019, vol. 30, no. 4, p. 834.

    Article  CAS  Google Scholar 

  12. Cui, J.Q., Yang, S.Y., Jiang, S.Y., and Xie, J., Microsc. Microanal., 2019, vol. 25, no. 1, p. 1.

    Article  Google Scholar 

  13. Bustin, R.M., Mastalerz, M., and Raudsepp, M., Int. J. Coal Geol., 1996, vol. 32, nos. 1–4, p. 5.

    Article  CAS  Google Scholar 

  14. Hetherington, C.J., Jercinovic, M.J., Williams, M.L., and Mahan, K., Chem. Geol., 2008, vol. 254, nos. 3–4, p. 133.

    Article  CAS  Google Scholar 

  15. Couto, D.D., Faure, M., Augier, R., Cocherie, A., Rossi, P., Li, X.H., and Lin, W., Int. J. Earth Sci., 2016, vol. 105, no. 2, p. 1.

    Article  Google Scholar 

  16. Ning, W.B., Wang, J.P., Xiao, D., Li, F.F., Huang, B., and Fu, D., J. Earth Sci., 2019, vol. 30, no. 5, p. 952.

    Article  CAS  Google Scholar 

  17. Höfer, H.E. and Brey, G.P., Am. Mineral., 2007, vol. 92, nos. 5–6, p. 873.

    Article  Google Scholar 

  18. Lavrent’ev, Y.G. and Usova, L.V., J. Anal. Chem., 2018, vol. 73, no. 1, p. 42.

    Article  Google Scholar 

  19. Lavrent’ev, Y.G., Usova, L.V., Lavrent’ev, M.Y., and Karmanov, N.S., J. Anal. Chem., 2020, vol. 75, no. 7, p. 902.

    Article  Google Scholar 

  20. Varshneya, A.K., Cooper, A.R., and Cable, M., J. Appl. Phys., 1966, vol. 37, no. 5, p. 2199.

    Article  CAS  Google Scholar 

  21. Vassamillet, L.F. and Caldwell, V.E., J. Appl. Phys., 1969, vol. 40, no. 4, p. 1637.

    Article  CAS  Google Scholar 

  22. Morgan, G.B. and London, D., Am. Mineral., 1996, vol. 81, nos. 9–10, p. 1176.

    Article  CAS  Google Scholar 

  23. Morgan VI, G.B. and London, D., Am. Mineral., 2005, vol. 90, no. 7, p. 1131.

    Article  CAS  Google Scholar 

  24. Zhang, W.L., Hu, H., Xie, L., and Hu, B., Geol. J. Chin. Univ., 2021, vol. 27, no. 3, p. 327.

    CAS  Google Scholar 

  25. Heinrich, K.F.J., J. Res. Natl. Inst. Stand. Technol., 2002, vol. 107, no. 6, p. 483.

    Article  Google Scholar 

  26. Colliex, C., C. R. Phys., 2019, vol. 20, nos. 7–8, p. 746.

    Article  CAS  Google Scholar 

  27. Ritchie, N., Microsc. Microanal., 2020, vol. 26, no. 3, p. 1.

    Article  Google Scholar 

  28. Armstrong, J.T., Microbeam Anal., 1995, vol. 4, p. 177.

    CAS  Google Scholar 

  29. Love, G. and Scott, V.D., J. Phys. D: Appl. Phys., 1978, vol. 11, no. 1, p. 7.

    Article  CAS  Google Scholar 

  30. Packwood, R.H. and Brown, J.D., X-Ray Spectrom., 1981, vol. 10, no. 3, p. 138.

    Article  CAS  Google Scholar 

  31. Love, G. and Scott, V.D., Scanning, 1981, vol. 4, no. 3, p. 110.

    Google Scholar 

  32. Armstrong, J.T., in Electron Probe Quantitation, Heinrich, K.F.J. and Newbury, D.E., Eds., Boston: Springer, 1991, p. 261.

    Google Scholar 

  33. Trincavelli, J., Limandri, S., and Bonetto, R., Spectrochim. Acta, Part B, 2014, vol. 101, p. 76.

    Article  CAS  Google Scholar 

  34. Bertin, E.P., Principles and Practice of X-Ray Spectrometric Analysis, New York: Plenum, 1970, p. 552.

    Google Scholar 

  35. Yao, L., Tian, D., and Liang, X.R., Rock Miner. Anal., 2008, vol. 27, no. 1, p. 49.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We highly appreciate the constructive comments from anonymous reviewers and the editor.

Funding

The authors also gratefully acknowledge the financial support from the Natural Science Foundation, China (no. 4210030145), the National Key Research and Development Project, China (no. 2019YFC0605202 and no. 2021YFC2901902), and the Natural Science Basic Research Program of Shaanxi Province, China (no. 2020JQ-974).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xijuan Tan.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Tan, X. Uncertainty of the Results of Electron Probe Microanalysis using a Spectrometer with Wavelength Dispersion in the Study of Geological Samples. J Anal Chem 77, 1333–1339 (2022). https://doi.org/10.1134/S1061934822100094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934822100094

Keywords:

Navigation