Skip to main content
Log in

Peculiarities of 2,6-Di-tert-butylpyridine Protonation: Mobility of Protonated Molecules

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

2,6-Di-tert-butylpyridine (DTBP) is widely used in ion mobility spectrometry and its combination with mass spectrometry as a standard compound for the calibration of the ion mobility scale. In this work, we computed the structure and determined the conformational composition of DTBP and products of its protonation using quantum chemical methods. We found three conformers of DTBP with similar stabilities. We showed that their protonation leads to three products with similar stabilities. The proton affinity and ga--s-phase basicity of DTBP were calculated. The thermodynamic parameters of DTBP reactions with hydrated hydroxonium ions H3O+(H2O)n (n = 0–3) were computed. The calculations confirmed that, in agreement with the experimental data, the reactions lead to the formation of protonated DTBP molecules that are not hydrated and do not form proton-bound dimers. We showed that the peculiarities of DTBP protonation are substantially due to the steric effect of tert-butyl groups. The reduced mobility of protonated DTBP molecules was calculated by the trajectory method. The calculation error is close to the experimental one. According to the experimental data, the calculated reduced mobilities do not significantly change with temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Spangler, G.E., Int. J. Ion Mobility Spectrom., 2015, vol. 18, nos. 3–4, p. 137.

  2. Valadbeigi, Y., Ilbeigi, V., Michalczuk, B., et al., J. Phys. Chem. A, 2019, vol. 123, no. 1, p. 313.

    Article  CAS  PubMed  Google Scholar 

  3. Tozihi, M., Bahrami, H., Farajmand, B., et al., Int. J. Mass Spectrom. Ion Processes, 2020, vol. 448.

  4. Cautereels, J., Claeys, M., Geldof, D., et al., J. Mass Spectrom., 2016, vol. 51, no. 8, p. 602.

    Article  CAS  PubMed  Google Scholar 

  5. Grimme, S., Angew. Chem. Int. Ed. Engl., 2013, vol. 52, no. 24, p. 6306.

    Article  CAS  PubMed  Google Scholar 

  6. D’Atri, V., Causon, T., Hernandez-Alba, O., et al., J. Sep. Sci., 2018, vol. 41, no. 1, p. 20.

    Article  PubMed  Google Scholar 

  7. Kune, C., Haler, J.R.N., Far, J., et al., ChemP-hysChem, 2018, vol. 19, no. 21, p. 2921.

    CAS  Google Scholar 

  8. Burns, D., Cory, M., Jr., and Piotrowski, J., US Patent Application Publication 20100224770A1, 2010.

  9. Campuzano, I.D.G., Dear, G., Beaumont, C., et al., US Patent Application Publication 2013/0218478U, 2013.

  10. Green, M.R., Giles, K., Richardson, K., et al., US Patent 10242851, 2019.

  11. Lebedev, A.V., J. Anal. Chem., 2019, vol. 74, no. 13. p. 1325.

    Article  CAS  Google Scholar 

  12. Lebedev, A.V., Mass-Spektrom., 2019, vol. 16, no. 3, p. 191.

    Google Scholar 

  13. Viitanen, A.-K., Mauriala, T., Mattila, T., et al., Talanta, 2008, vol. 76, no. 5, p. 1218.

    Article  CAS  PubMed  Google Scholar 

  14. Li, M., Zhang, J., Jiang, J., et al., Analyst, 2014, vol. 139, no. 7, p. 1687.

    Article  CAS  PubMed  Google Scholar 

  15. Sysoev, A.A., Poteshin, S.S., Chernyshev, D.M., et al., Eur. J. Mass Spectrom., 2014, vol. 20, no. 2, p. 185.

    Article  CAS  Google Scholar 

  16. Keelor, J.D., Zambrzycki, S., Li, A., Clowers, B.H., et al., Anal. Chem., 2017, vol. 89, no. 21, p. 11301.

    Article  CAS  PubMed  Google Scholar 

  17. Fernández-Maestre, R., Int. J. Mass Spectrom. Ion Processes, 2017, vol. 421, p. 8.

    Article  Google Scholar 

  18. Fernández-Maestre, R., Int. J. Ion Mobility Spectrom., 2017, vol. 20, nos. 1–2, p. 11.

  19. Adamov, A., Mauriala, T., Teplov, V., et al., Int. J. Mass Spectrom. Ion Processes, 2010, vol. 298, nos. 1–3, p. 24.

  20. Keelor, J.D., Dwivedi, P., and Fernandez, F.M., J. Am. Soc. Mass Spectrom., 2014, vol. 25, no. 9, p. 1538.

    Article  CAS  PubMed  Google Scholar 

  21. Chernyshev, D.M., Poteshin, S.S., Sysoev, A.A., et al., J. Anal. Chem., 2012, vol. 67, no. 14. p. 1093.

    Article  CAS  Google Scholar 

  22. Sysoev, A.A., Doctoral (Phys.–Math.) Dissertation, Moscow, 2015. http://vak.ed.gov.ru/az/server/php/filer_new.php?table=att_case&fld=autoref&key[]= 210318&version=100. Accessed April, 22, 2018.

  23. Hauck, B.C., Siems, W.F., Harden, C.S., et al., Int. J. Ion Mobility Spectrom., 2017, vol. 20, nos. 3–4, p. 57.

  24. Yeager, B., Bustin, K., Stewart, J., et al., Anal. Methods, 2015, vol. 7, no. 22, p. 9683.

    Article  CAS  Google Scholar 

  25. Hauck, B.C., Siems, W.F., Harden, C.S., et al., J. Phys. Chem. A, 2017, vol. 121, no. 11, p. 2274.

    Article  CAS  PubMed  Google Scholar 

  26. Roithová, J. and Exner, O., J. Phys. Org. Chem., 2001, vol. 14, no. 11, p. 752.

    Article  Google Scholar 

  27. Hunter, E.P.L. and Lias, S.G., J. Phys. Chem. Ref. Data, 1998, vol. 27, no. 3, p. 413.

    Article  CAS  Google Scholar 

  28. Eiceman, G.A., Nazarov, E.G., and Stone, J.A., Anal. Chim. Acta, 2003, vol. 493, no. 2, p. 185.

    Article  CAS  Google Scholar 

  29. Fernández-Maestre, R., Harden, C.S., Ewing, R.G., et al., Analyst, 2010, vol. 135, no. 6, p. 1433.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Crawford, C.L., Hauck, B.C., Tufariello, J.A., et al., Talanta, 2012, vol. 101, p. 161.

    Article  CAS  PubMed  Google Scholar 

  31. Meot-Ner (Mautner), M. and Sieck, L.W., J. Am. Chem. Soc., 1983, vol. 105, no. 10, p. 2956.

    Google Scholar 

  32. Sysoev, A., Adamov, A., Viidanoja, J., et al., Rapid Commun. Mass Spectrom., 2004, vol. 18, no. 24, p. 3131.

    Article  CAS  PubMed  Google Scholar 

  33. Viitanen, A.-K., Mattila, T., Mäkelä, J.M., et al., Atmos. Res., 2008, vol. 90, nos. 2–4, p. 115.

  34. Laakia, J., Adamov, A., Jussila, M., et al., J. Am. Soc. Mass Spectrom., 2010, vol. 21, no. 9, p. 1565.

    Article  CAS  PubMed  Google Scholar 

  35. Chernyshev, D.M., Frolov, I.S., Frolov, A.S., et al., J. Anal. Chem., 2011, vol. 66, no. 13. p. 1253.

    Article  CAS  Google Scholar 

  36. Granovsky, A.A., Firefly, version 8.0.1. http://classic.chem.msu.su/gran/firefly/index.html. Accessed July 15, 2014.

  37. Grimme, S., Ehrlich, S., and Goerigk, L., J. Comput. Chem., 2011, vol. 32, no. 7, p. 1456.

    Article  CAS  PubMed  Google Scholar 

  38. Karton, A., Tarnopolsky, A., Lamere, J.-F., et al., J. Phys. Chem. A, 2008, vol. 112, no. 50, p. 12868.

    Article  CAS  PubMed  Google Scholar 

  39. Boys, S.F. and Bernardi, F., Mol. Phys., 1970, vol. 19, no. 4, p. 553.

    Article  CAS  Google Scholar 

  40. Xantheas, S.S., J. Chem. Phys., 1996, vol. 104, no. 21, p. 8821.

    Article  CAS  Google Scholar 

  41. Rak, J., Skurski, P., Simons, J., et al., J. Am. Chem. Soc., 2001, vol. 123, no. 47, p. 11695.

    Article  CAS  PubMed  Google Scholar 

  42. Bouchoux, G., Salpin, J.Y., and Leblanc, D., Int. J. Mass Spectrom. Ion Processes, 1996, vol. 153, no. 1, p. 37.

    Article  CAS  Google Scholar 

  43. Ewing, R.G., Eiceman, G.A., Harden, C.S., et al., Int. J. Mass Spectrom. 2006, vols. 255–256, p. 76.

  44. Larriba, C. and Hogan, C.J., J. Phys. Chem. A, 2013, vol. 117, no. 19, p. 3887.

    Article  CAS  PubMed  Google Scholar 

  45. Larriba, C. and Hogan, C.J., J. Comput. Phys., 2013, vol. 251, p. 344.

    Article  CAS  Google Scholar 

  46. Ouyang, H., Larriba-Andaluz, C., Oberreit, D., et al., J. Am. Soc. Mass Spectrom., 2013, vol. 24, no. 12, p. 1833.

    Article  CAS  PubMed  Google Scholar 

  47. Mesleh, M.F., Hunter, J.M., Shvartsburg, A.A., et al., J. Phys. Chem., 1996, vol. 100, no. 40, p. 16082.

    Article  CAS  Google Scholar 

  48. Takaya, K., Kaneko, T., Tanuma, H., et al., Int. J. Ion Mobility Spectrom., 2016, vol. 19, no. 4, p. 227.

    Article  CAS  Google Scholar 

  49. Wu, T., Derrick, J., Nahin, M., et al., J. Chem. Phys., 2018, vol. 148, no. 7, 074102.

    Article  PubMed  Google Scholar 

  50. Campanelli, A.R., Ramondo, F., Domenicano, A., et al., J. Phys. Chem., 1994, vol. 98, no. 43, p. 11046.

    Article  CAS  Google Scholar 

  51. Seeman, J.I., Secor, H.V., Breen, P.J., et al., J. Am. Chem. Soc., 1989, vol. 111, no. 9, p. 3140.

    Article  CAS  Google Scholar 

  52. Pedersen, C.S., Lauritsen, F.R., Sysoev, A., et al., J. Am. Soc. Mass Spectrom., 2008, vol. 19, no. 9, p. 1361.

    Article  CAS  PubMed  Google Scholar 

  53. Tsuzuki, S., Mikami, M., and Yamada, S., J. Am. Chem. Soc., 2007, vol. 129, no. 27, p. 8656.

    Article  CAS  PubMed  Google Scholar 

  54. Arnett, E.M. and Chawla, B., J. Am. Chem. Soc., 1979, vol. 101, no. 24, p. 7141.

    Article  CAS  Google Scholar 

  55. Cohen, M.J. and Karasek, F.W., J. Chromatogr. Sci., 1970, vol. 8, no. 6, p. 330.

    Article  CAS  Google Scholar 

Download references

Funding

This work had no sponsor support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Lebedev.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedev, A.V. Peculiarities of 2,6-Di-tert-butylpyridine Protonation: Mobility of Protonated Molecules. J Anal Chem 76, 1538–1548 (2021). https://doi.org/10.1134/S1061934821130074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934821130074

Keywords:

Navigation