Skip to main content
Log in

Radio-Frequency Ion Guides with Periodical Electrodes and Pulse Voltages

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

We consider radio-frequency ion guides formed by electrodes, which are periodic sequences of circular apertures. With the help of pulse voltages arranged as trains of a special type, a relay-switched sequence of axial distributions of the pseudopotential can be organized along the axis of the system in the form of space waves with alternating maxima and minima, which convey charged particles along the conveying channel. The disadvantage of the proposed conveying technology is the obligatory presence of neutral gas in moderate amounts, which dampens the excess kinetic energy acquired by charged particles in the jump-like switching of the radio-frequency electric field. An advantage of the proposed conveying technology is the simplified form of radio-frequency voltages applied to the electrodes of the device and the flexible control of the guiding velocity in Gas Chromatography–Mass Spectrometry interfaces, for example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Yavor, M.I., in Optics of Charged Particle Analyzers, Advances of Imaging and Electron Physics, vol. 157, Amsterdam: Elsevier, 2009, p. 142.

  2. Slobodenyuk, G.I., Kvadrupol’nye mass-spektrometry (Quadrupole Mass Spectrometers), Moscow: Atomizdat, 1974.

  3. Dawson, P.H., Quadrupole Mass Spectrometry and Its Applications, Woodbury: Am. Inst. Phys., 1995, p. 372.

    Google Scholar 

  4. March, R.E. and Hughes, R.J., Quadrupole Storage Mass Spectrometry, New York: Wiley, 1989.

    Google Scholar 

  5. Dehmelt, H.G., Adv. At. Mol. Phys., 1967, vol. 3, p. 53.

    Article  CAS  Google Scholar 

  6. Major, F.G. and Dehmelt, H.G., Phys. Rev., 1968, vol. 170, p. 91.

    Article  CAS  Google Scholar 

  7. Dawson, P.H. and Fulford, J.E., Int. J. Mass Spectrom. Ion Phys., 1982, vol. 42, p. 195.

    Article  CAS  Google Scholar 

  8. Major, F.G., Gheorghe, V.N., and Werth, G., Charged Particle Traps: Physics and Techniques of Charged Particle Field Confinement, Springer Series on Atomic, Optical, and Plasma Physics, vol. 37, Berlin: Springer, 2005.

  9. Werth, G., Gheorghe, V.N., and Major, F.G., Charged Particle Traps II: Applications, Springer Series on Atomic, Optical, and Plasma Physics, vol. 54, Berlin: Springer, 2009.

  10. Landau, L.D. and Lifshitz, E.M., The Course of Theoretical Physics, vol. 1: Mechanics, New York: Pergamon, 1969.

    Google Scholar 

  11. Sagdeev, R.Z., Usikov, D.A., and Zaslavsky, G.M., Nonlinear Physics: From the Pendulum to Turbulence and Chaos, New York: Harwood Academic, 1988.

    Google Scholar 

  12. Gaponov, V.A. and Miller, M.A., Zh. Eksp. Teor. Fiz., 1958, vol. 34, no. 2, p. 242.

    Google Scholar 

  13. Miller, M.A., Izv. Vyssh. Uchebn. Zaved., Radiofiz., 1958, vol. 1, no. 3, p. 110.

    Google Scholar 

  14. Sivukhin, D.V., in Voprosy teorii plazmy 1 (Plasma Theory Issues, Issue 1), Moscow: Gosatomizdat, 1963, p. 7.

  15. Morozov, A.I. and Soloviev, L.S., in Voprosy teorii plazmy 2 (Plasma Theory Issues, Issue 2), Moscow: Gosatomizdat, 1963, p. 177.

  16. Geyko, V.I. and Fraiman, G.M., J. Exp. Theor. Phys., 2008, vol. 107, no. 6, p. 960.

    Article  CAS  Google Scholar 

  17. Kapitsa, P.L., Usp. Fiz. Nauk, 1962, vol. 78, no. 2, p. 181.

    Article  Google Scholar 

  18. Chirkov, A.G., Doctoral (Phys.–Math.) Dissertation, St. Petersburg: St. Petersburg State Polytech. Univ., 2001.

  19. Wuerker, R.F., Shelton, H., and Langmuir, R.V., J. Appl. Phys., 1959, vol. 30, no. 3, p. 342.

    Article  Google Scholar 

  20. Gerlich, D., in State-Selected and State-to-State Ion-Molecule reaction Dynamics, Part 1: Experiment, Ng Cheuk-Yiu and Baer, M., Eds., Advances in Chemical Physics, vol. 82, New York: Wiley, 1992, p. 1

  21. Berdnikov, A.S., Microsc. Microanal., 2015, vol. 21, no. S4, p. 78.

    Article  Google Scholar 

  22. Berdnikov, A.S., Verenchikov, A.N., and Kuzmin, A.G., J. Anal. Chem., 2019, vol. 74, no. 14, p. 1378.

    Article  CAS  Google Scholar 

  23. Berdnikov, A.S. and Gall, L.N., Gall, N.R., and Soloviev, K.V., Vestn. St. Peterburg. Politekh. Univ., Fiz. Mat. Nauki, 2018, vol. 11, no. 3, p. 52.

    Google Scholar 

  24. Berdnikov, A.S., Douglas, D.J., and Konenkov, N.V., Int. J. Mass Spectrom. Ion Processes, 2017, vol. 421, p. 204.

    Article  CAS  Google Scholar 

  25. Douglas, D.J., Berdnikov, A.S., and Konenkov, N.V., Int. J. Mass Spectrom. Ion Processes, 2015, vol. 377, no. 1, p. 345.

    Article  CAS  Google Scholar 

  26. Bahr, R., MSc Thesis, Freiburg im Breisgau: Univ. of Freiburg, 1969.

  27. Gerlich, D., MSc Thesis, Freiburg im Breisgau: Univ. of Freiburg, 1971.

  28. Teloy, E. and Gerlich, D., Chem. Phys., 1974, vol. 4, no. 3, p. 417.

    Article  CAS  Google Scholar 

  29. Gerlich, D. and Kaefer, G., Astrophys. J., 1989, vol. 347, no. 2, p. 849.

    Article  CAS  Google Scholar 

  30. Berdnikov, A.S. and Gall, N.R., J. Anal. Chem., 2014, vol. 69, no. 13, p. 1285.

    Article  CAS  Google Scholar 

  31. Berdnikov, A.S. and Gall, N.R., J. Anal. Chem., 2014, vol. 69, no. 13, p. 1285.

    Article  CAS  Google Scholar 

  32. Schwager, L., Tung, S., Barr, W.L., et al., J. Appl. Phys., 1996, vol. 80, no. 7, p. 3646.

    Article  Google Scholar 

  33. Bateman, R.H., Giles, K., and Pringle, S., US Patent 6812453, 2004.

  34. Giles, K., Pringle, S.D., Worthington, K.R., Little, D., Wildgoose, J.L., and Bateman, R.H., Rapid Commun. Mass Spectrom., 2004, vol. 18, no. 20, p. 2401.

    Article  CAS  PubMed  Google Scholar 

  35. Waters Corporation. http://www.waters.com.

  36. Berdnikov, A.S., Nauchn. Priborostr., 2011, vol. 21, no. 2, p. 77.

    Google Scholar 

  37. Berdnikov, A.S. and Menjajushhijsja, Nauchn. Priborostr., 2011, vol. 21, no. 3, p. 83.

    Google Scholar 

  38. Berdnikov, A.S., Nauchn. Priborostr., 2011, vol. 21, no. 4, p. 75.

    Google Scholar 

  39. Berdnikov, A.S., Nauchn. Priborostr., 2011, vol. 21, no. 4, p. 86.

    Google Scholar 

  40. Berdnikov, A.S., Nauchn. Priborostr., 2012, vol. 22, no. 2, p. 105.

    Google Scholar 

  41. Berdnikov, A.S., Nauchn. Priborostr., 2014, vol. 24, no. 1, p. 104.

    Google Scholar 

  42. Andreeva, A.D. and Berdnikov, A.S., Abstracts of Papers, V Vseross. konf. “Mass-spektrometriya i ee prikladnye problem” (Fifth Conf. of the Russian Society of Mass Spectrometry “Mass Spectrometry and Its Applied Problems”), Moscow, 2011.

  43. Andreeva, A.D. and Berdnikov, A.S., J. Anal. Chem., 2012, vol. 67, no. 13, p. 1034.

    Article  CAS  Google Scholar 

  44. Andreeva, A.D. and Berdnikov, A.S., J. Anal. Chem., 2012, vol. 67, no. 13, p. 1034.

    Article  CAS  Google Scholar 

  45. Kirchner, N.J., US Patent 5206506, 1993.

  46. Dynin, E.A. and Kirchner, N.J., Abstracts of Papers, 43rd ASMS Conference on Mass Spectrometry and Allied Topics, Atlanta, 1995.

  47. Satake, H., Baba, T., and Waki, I., US Patent 8049169, 2011.

  48. RF Utility Model 113611, 2011.

  49. Berdnikov, A. and Andreyeva, A., RF Patent 2465679, 2012.

  50. Berdnikov, A., Andreyeva, A., and Giles, R., US Patent 9536721, 2017.

  51. Berdnikov, A., Andreyeva, A., and Giles, R., US Patent 9812308, 2017.

  52. Shaffer, S.A., Tang, K., Anderson, G., et al., Rapid Commun. Mass Spectrom., 1997, vol. 11, no. 16, p. 1813.

    Article  CAS  Google Scholar 

  53. Shaffer, S.A., Prior, D.C., Anderson, G., et al., Anal. Chem., 1998, vol. 70.

  54. Shaffer, S.A., Tolmachev, A.V., Prior, D.C., Anderson, G.A., Udseth, H.R., and Smith, R.D., Anal. Chem., 1999, vol. 71, no. 15, p. 2957.

    Article  CAS  PubMed  Google Scholar 

  55. Tolmachev, A.V., Kim, T., Udseth, H.R., et al., Int. J. Mass Spectrom. Ion Processes, 2000, vol. 203, nos. 1–3, p. 31.

    Article  CAS  Google Scholar 

  56. Kim, T., Tolmachev, A.V., Harkewicz, R., et al., Anal. Chem., 2000, vol. 72, no. 10, p. 2247.

    Article  CAS  PubMed  Google Scholar 

  57. Lynn, E.C., Chung, M.-C., and Han, C.-C., Rapid Commun. Mass Spectrom., 2000, vol. 14, no. 22, p. 2129.

    Article  CAS  PubMed  Google Scholar 

  58. UK Patent Application 2341270, 1999.

  59. Inatsugu, N. and Waki, H., US Patent 6462338, 1999.

  60. UK Patent 2366072, 2001.

  61. Senko, M.W. and Kovtoun, V.V., US Patent 7514673, 2007.

  62. Senko, M.W., Kovtoun, V.V., Atherton, P.R., et. al., US Patent 7781728, 2008.

  63. Kelley, P.E., US Patent 5466931, 1994.

  64. Khursheed, A., Dinnis, A.R., and Smart, P.D., Microelectron. Eng., 1991, vol. 14, nos. 3–4, p. 197.

    Article  Google Scholar 

  65. Khursheed, A., Microelectron. Eng., 1992, vol. 16, nos. 1–4, p. 43.

    Article  Google Scholar 

  66. Khursheed, A., Phang, J.C., and Thong, J.T.L., Scanning, 1998, vol. 20, no. 2, p. 87.

    Article  Google Scholar 

  67. Khursheed, A., Rev. Sci. Instrum., 2000, vol. 71, no. 4, p. 1712.

    Article  CAS  Google Scholar 

  68. Khursheed, A., Optik (Munich, Ger.), 2002, vol. 113, no. 11, p. 505.

  69. Khursheed, A., Ultramicroscopy, 2002, vol. 93, nos. 3–4, p. 331.

    Article  CAS  PubMed  Google Scholar 

  70. Khursheed, A., Karuppiah, N., Osterberg, M., and Thong, J.T.L., Rev. Sci. Instrum., 2003, vol. 74, p. 134.

    Article  CAS  Google Scholar 

  71. Khursheed, A. and Osterberg, M., Scanning, 2004, vol. 26, no. 6, p. 296.

    Article  PubMed  Google Scholar 

  72. Osterberg, M. and Khursheed, A., Nucl. Instrum. Methods Phys. Res., Sect. A, 2005, vol. 555, nos. 1–2, p. 20.

    CAS  Google Scholar 

  73. Khursheed, A. and Osterberg, M., Nucl. Instrum. Methods Phys. Res., Sect. A, 2006, vol. 556, no. 2, p. 437.

    CAS  Google Scholar 

  74. Luo, T. and Khursheed, A., J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom., 2007, vol. 25, no. 6, p. 2017.

    CAS  Google Scholar 

  75. Khursheed, A. and Hoang, H.Q., Ultramicroscopy, 2008, vol. 109, no. 1, p. 104.

    Article  CAS  PubMed  Google Scholar 

  76. Khursheed, A., Scanning Electron Microscope Optics and Spectrometers, Singapore: World Scientific, 2010.

    Book  Google Scholar 

  77. Hoang, H.Q. and Khursheed, A., Nucl. Instrum. Methods Phys. Res., Sect. A, 2011, vol. 635, no. 1, p. 64.

    CAS  Google Scholar 

  78. Hoang, H.Q., Osterberg, M., and Khursheed, A., Ultramicroscopy, 2011, vol. 111, no. 8, p. 1093.

    Article  CAS  PubMed  Google Scholar 

  79. Khursheed, A., Hoang, H.Q., and Srinivasan, A., J. Electron Spectrosc. Relat. Phenom., 2012, vol. 184, nos. 11–12, p. 525.

    Article  CAS  Google Scholar 

  80. Shao, X., Srinivasan, A., Ang, W.K., and Khursheed, A., Nat. Commun., 2018, vol. 9, no. 1, p. 1288.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Belov, M.E., Colburn, A.W., and Derrick, P.J., Rev. Sci. Instrum., 1997, vol. 69, no. 3, p. 1275.

    Article  Google Scholar 

  82. Colburn, A.W., Giannakopulos, A.E., and Derrick, P.J., Eur. J. Mass Spectrom., 2004, vol. 10, no. 2, p. 149.

    Article  CAS  Google Scholar 

  83. Colburn, AW., Barrow, M.P., Gill, M.C., et al., Phys. Procedia, 2008, vol. 1, no. 1, p. 51.

    Article  Google Scholar 

  84. Barrow, M.P., Gill, M.C., Colburn, A.W., et al., Abstracts of Papers, 17th Int. Mass Spectrometry Conference, Prague, 2006.

  85. Gill, M.C., Barrow, M.P., Colburn, A.W., et al., Abstracts of Papers, 24th Informal Meeting on Mass Spectrometry, Ustron, Poland, 2006.

  86. Barrow, M.P., Colburn, A.W., Gill, M.C., et al., Abstracts of Papers, 18th Annual Tandem Mass Spectrometry Workshop, Lake Louise, Canada, 2005.

  87. Colburn, A.W., Barrow, M.P., Mark, L.P., et al., Abstracts of Papers, 28th Annual Meeting of the British Mass Spectrometry Society, Heslington, UK: Univ. of York, 2005.

  88. Barrow, M.P., Colburn, A.W., Giannakopulos, A.E., et al. Abstracts of Papers, 53rd ASMS Conf. on Mass Spectrometry, San Antonio, TX, 2005.

  89. Gill, M.C., PhD Thesis, Coventry, UK: Univ. of Warwick, 2010.

  90. UK Patent Application 2373630A, 2002.

  91. UK Patent 2373630, 2005.

  92. Derrick, P.J., Colburn, A.W., and Giannakopulos, A., US Patent 6894286, 2005.

  93. UK Patent Application 2408384A, 2005.

  94. UK Patent 2408384, 2005.

  95. Derrick, P.J., Colburn, A.W., and Giannakopulos, A., US Patent 7375344, 2008.

  96. Volkov, V.N. and Krylov, I.A., in Mezhuniv. sbornik nauchnykh publikatsii (Interuniversity Collection of Scientific Papers), Ivanovo: Ivanov. Energ. Inst., 1976, p. 76.

  97. Tolmachev, A.V., Chernushevich, I.V., Dodonov, A.F., et al., Nucl. Instrum. Methods Phys. Res., Sect. B, 1997, vol. 124, no. 1, p. 112.

    CAS  Google Scholar 

  98. Dem’yantseva, N.G., Kuz’min, S.M., Solunin, M.A., et al., Tech. Phys., 2012, vol. 57, no. 11, p. 1465.

    Article  CAS  Google Scholar 

  99. Watson, G.N., A Treatise on the Theory of Bessel Functions, Cambridge: Cambridge Univ. Press, 1966, 2nd ed.

    Google Scholar 

  100. Bateman Manuscript Project. Higher Transcendental Functions, Erdélyi, A., Ed., New York: McGraw-Hill, 1953, vol. 2.

    Google Scholar 

  101. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Abramowitz, M. and Stegun, I.A., Eds., New York: Dover, 1965.

    Google Scholar 

  102. Ministry of Science and Higher Education of the Russian Federation. https://minobrnauki.gov.ru/.

  103. Institute of Analytical Instrumentation, Russian Academy of Sciences. http://iairas.ru.

  104. Wolfram Mathematica: The System for Modern Technical Computing. http://wolfram.com/mathematica/.

  105. Paint.NET: Free Software for Digital Photo Editing. http:// www.getpaint.net/.

  106. Shimadzu Research Laboratory. http://www.srlab.co.uk/.

Download references

ACKNOWLEDGMENTS

A.S. Berdnikov and N.R. Gall are grateful to Roger Giles, an employee of the Shimadzu Research Laboratory [106], for the general formulation of the problem of replacing continuous voltages with pulse voltages in guiding devices which use the A-Wave effect. A.S. Berdnikov expresses his deep respect to Sumio Kumashiro, M.Yu. Sudakov, and N.V. Konenkov for their support in solving the problems of charged particle motion in radio-frequency electric fields and for numerous useful advice, and also expresses his gratitude to A. Andreeva-Giles (Alina Giles) for simulations carried out in the registration of patents related to the A-Wave method. The authors are grateful to the reviewers of the article for the references to the works of P.J. Derrick and A. Khursheed, which supplemented the bibliography to this article and made it complete.

Funding

This work was partially supported within the framework of research work 0074-2019-0009, which is part of the State order no. 075-00780-19-02 of the Ministry of Science and Higher Education of the Russian Federation [102] for the Institute for Analytical Instrumentation, Russian Academy of Sciences [103]. The calculations were performed using the Wolfram Mathematica program version 11.0 [104]. The figures were created using the Wolfram Mathematica version 11.0 [104] with subsequent manual editing in the Paint.NET graphic editor, version 4.1.5 [105].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Berdnikov.

Ethics declarations

The authors declare no conflicts of interest, including financial ones.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berdnikov, A.S., Verenchikov, A.N., Gall, N.R. et al. Radio-Frequency Ion Guides with Periodical Electrodes and Pulse Voltages. J Anal Chem 75, 1758–1773 (2020). https://doi.org/10.1134/S1061934820140063

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934820140063

Keywords:

Navigation