Skip to main content
Log in

Gold Nanoparticles–Fe3O4 Beads/multiwalled Carbon Nanotubes Modified Glassy Carbon Electrode as a Sensing Platform for the Electrocatalytic Determination of Loratadine in Biological Fluids

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstarct

The glassy carbon electrode was modified by gold nanoparticles (AuNps)–Fe3O4 beads/multiwalled carbon nanotubes (MWCNTs). Surface morphology characterization of the bare and modified electrodes was characterized by scanning electron microscopy technique. This modified glassy carbon electrode was applied for electro-catalytic determination of loratadine. The modified electrode lowered the reduction overpotential of loratadine with the enhancement of its peak current; this behavior was attributed to the electro-catalytic activity of the modified electrode toward loratadine electro-reduction. Various parameters, such as pH of the working solution, amounts of MWCNTs, Fe3O4 beads and AuNps affecting the electrochemical performance of the modified electrode toward loratadine determination were optimized. The linear response of the modified electrode toward loratadine concentration using hydrodynamic amperometry method was between 0.05–5 μM with a detection limit of 0.04 μM (S/N = 3). The modified electrode figures of merit were high repeatability, reproducibility, long-term life time and low response time (<3 s). The practicability of this proposed method was examined by loratadine content quantification in commercial pharmaceutical samples, human blood serum and urine samples and satisfactory results were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Mashhadizadeh, M.H., Hadjiakhoondi, A., and Ahmadaghaei, S., J. Iran. Chem. Soc., 2011, vol. 8, p. 687.

    Article  CAS  Google Scholar 

  2. Sutherland, F.C.W., de Jager, A.D., Badenhorst, D., Scanes, T., Hundt, H.K.L., Swart, K.J., and Hundt, A.F., J. Chromatogr. A, 2001, vol. 914, p. 37.

    Article  CAS  Google Scholar 

  3. Ebrahimzadeh, H., Molaei, K., Asgharinezhad, A.A., Shekari, N., and Dehghani, Z., Anal. Chim. Acta, 2013, vol. 767, p. 155.

    Article  CAS  Google Scholar 

  4. Amini, H. and Ahmadiani, A., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2004, vol. 809, p. 227.

    Article  CAS  Google Scholar 

  5. Radhakrishna, T., Narasaraju, A., Ramakrishna, M., and Satyanarayana, A., J. Pharm. Biomed. Anal., 2003, vol. 31, p. 359.

    Article  CAS  Google Scholar 

  6. Mabrouk, M.M., El-Fatatry, H.M., Hammad, S., and Wahbi, A.A.M., J. Pharm. Biomed. Anal., 2003, vol. 33, p. 597.

    Article  CAS  Google Scholar 

  7. Vlase, L., Imre, S., Muntean, D., and Leucuta, S.E., J. Pharm. Biomed. Anal., 2007, vol. 44, p. 652.

    Article  CAS  Google Scholar 

  8. Fernández, H., Rupérez, F.J., and Barbas, C., J. Pharm. Biomed. Anal., 2003, vol. 31, p. 499.

    Article  Google Scholar 

  9. Norouzi, P. and Ganjali, M.R., J. Anal. Chem., 2008, vol. 63, p. 566.

    Article  CAS  Google Scholar 

  10. Ghoneim, M.M., Mabrouk, M.M., Hassanein, A.M., and Tawfik, A., J. Pharm. Biomed. Anal., 2001, vol. 25, p. 933.

    Article  CAS  Google Scholar 

  11. Gooding, J., Electrochim. Acta, 2005, vol. 50, p. 3049.

    Article  CAS  Google Scholar 

  12. Altintas, E.B., Uzun, L., and Denizli, A., Chin. Particuol., 2007, vol. 5, p. 174.

    Article  CAS  Google Scholar 

  13. Arvand, M. and Hassannezhad, M., Mater. Sci. Eng., C, 2014, vol. 36, p. 160.

    Article  CAS  Google Scholar 

  14. Philippova, O., Barabanova, A., Molchanov, V., and Khokhlov, A., Eur. Polym. J., 2011, vol. 47, p. 542.

    Article  CAS  Google Scholar 

  15. Gopalakannan, V. and Viswanathan, N., Int. J. Biol. Macromol., 2015, vol. 72, p. 862.

    Article  CAS  Google Scholar 

  16. Olmedo, I., Araya, E., Sanz, F., Medina, E., Arbiol, J., Toledo, P., Alvarez-Lueje, A., Giralt, E., and Kogan, M.J., Bioconjugate Chem., 2008, vol. 19, p. 1154.

    Article  CAS  Google Scholar 

  17. Sturm, J.C., Diaz, M.A., Freire Pessoa, H.L., and Nuñez-Vergara, L.J., Talanta, 1996, vol. 43, p. 2029.

    Article  Google Scholar 

  18. Miller, J.C. and Miller, J.N., Statistics and Chemometrics for Analytical Chemistry, Edinburgh Gate Harlow: Pearson, 2010, 6th ed., p. 210.

  19. Pires Eisele, A.P. and Romão Sartori, E., Anal. Methods, 2015, vol. 7, p. 8697.

    Article  Google Scholar 

Download references

Funding

The authors would like to thank Marand Branch, Islamic Azad University for the financial support of this research which is based on a research project contract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akbar Hassanpour.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbar Hassanpour, Baj, R.F. & Abolhasani, J. Gold Nanoparticles–Fe3O4 Beads/multiwalled Carbon Nanotubes Modified Glassy Carbon Electrode as a Sensing Platform for the Electrocatalytic Determination of Loratadine in Biological Fluids. J Anal Chem 74, 1223–1231 (2019). https://doi.org/10.1134/S1061934819120050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934819120050

Keywords:

Navigation