Skip to main content
Log in

A Highly Sensitive Modified Glassy Carbon Electrode with a Carboxylated Multi-walled Carbon Nanotubes/Nafion Nano Composite for Voltammetric Sensing of Dianabol in Biological Fluid

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The extraordinary prerequisite for the analysis of an anabolic steroid, namely dianabol (DB), has inspired towards the development of a cost-effective and high-performance sensing probe. Thus, a simple and robust electrochemical sensor (c-MWCNTs-Nafion®lGCE) for dianabol (DB), a widely used steroid, was developed using a glassy carbon electrode (GCE) modified with functionalized carboxylated multi-walled carbon nanotubes (c-MWCNT) and Nafion®. At pH 7–8, differential pulse–cathodic stripping voltammetry (DP-CSV) displayed two cathodic peaks at–0.85 and–1.35 V that varied linearly over a wide range (9.0 × 10–9 (2.7 μg L–1)–9.0 × 10–6 (2.7 × 103 μg L–1) mol L–1) and 2.9 × 10–6 (8.7 × 102 μg L–1)–8.0 × 10–5 (2.4 × 104 μg L–1) mol L–1) of DB concentrations, respectively. The low limits of detection and quantification at peak I (–0.85 V) were 2.7 × 10–9 (8.1 × 10–1 ng mL–1) and 9.0 × 10–9 (2.7 ng mL–1) mol L–1, respectively. The repeatability and reproducibility displayed relative standard deviations lower than 5%. The method was applied for DB analysis in human urine and subsequently compared with the standard HPLC method. Interference of common metabolites in biological fluids samples to DB sensing was insignificant. This method has distinctive advantages e.g. precise, short analytical time, sensitive, economical, reproducible and miniaturized sample preparation for DB analysis in biological samples of human origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Druzhinina, V. Andryushina, T. Stytsenko, and N. Voishvillo, Appl. Biochem. Microbiol., 2008, 44, 580.

    Article  CAS  Google Scholar 

  2. H. Ghaderi, A. M. Tehrani, T. Sadeghi, and K. Solati, Pak. J. Med. Health Sci., 2019, 13, 559.

    Google Scholar 

  3. M. K. Parr, F. Botrè, A. Naß, J. Hengevoss, P. Diel, and G. Wolber, Biol. Sport, 2015, 32, 169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. J. M. Ghani, H. J. Hammod, and H. S. Jaffat, Int. J. Pharm. Qual. Assur., 2018, 9, 291.

    Google Scholar 

  5. R. M. Coward, S. Rajanahally, J. R. Kovac, R. P. Smith, A. W. Pastuszak and L. I. Lipshultz, J. Urol., 2013, 190, 2200.

    Article  CAS  PubMed  Google Scholar 

  6. H. Morovvati, M. Babaei, Z. Tootian, S. Fazelipour, H. Anbara, and A. Akbarzadeh, J. Babol Univ. Med. Sci., 2018, 20, 36.

    Google Scholar 

  7. C. Maravelias, A. Dona, M. Stefanidou, and C. Spiliopoulou, Toxicol. Lett., 2005, 158, 167.

    Article  CAS  PubMed  Google Scholar 

  8. J.. van Amsterdam, A. Opperhuizen, and F. Hartgens, Regul. Toxicol. Pharmacol., 2010, 57, 117.

    Article  PubMed  Google Scholar 

  9. A. O. Hossain, J. Global Pharma Technol., 2018, 10, 215.

    Google Scholar 

  10. P. Kintz, Toxicol. Anal. et Clin., 2017, 29, 320.

    Google Scholar 

  11. A. Afkhami, H. Ghaedi, T. Madrakian, D. Nematollahi, and B. Mokhtari, Talanta, 2014, 121, 1.

    Article  CAS  PubMed  Google Scholar 

  12. P. Van Eenoo, W. Van Gansbeke, N. De Brabanter, K. Deventer, and F. T. Delbeke, J. Chromatogr. A, 2011, 1218, 3306.

    Article  PubMed  Google Scholar 

  13. L. K. Amundsen, J. T. Kokkonen, S. Rovio, and H. Sirén, J. Chromatogr. A, 2004, 1040, 123.

    Article  CAS  PubMed  Google Scholar 

  14. O. J. Pozo, P. Van Eenoo, K. Deventer, H. Elbardissy, S. Grimalt, J. V. Sancho, F. Hernandez, R. Ventura, and F. T. Delbeke, Anal. Chim. Acta, 2011, 684, 107.

    Article  CAS  Google Scholar 

  15. M. Yamada, S. Aramaki, M. Kurosawa, I. Kijima-Suda, K. Saito, and H. Nakazawa, Anal. Sci., 2008, 24, 1199.

    Article  CAS  PubMed  Google Scholar 

  16. W. Zhao, C. Liu, H. Yin, K. Qi, M. Xu, J. Yang, and Y. Pan, Anal. Methods, 2019, 11, 1304.

    Article  CAS  Google Scholar 

  17. H. Shang, H. Xu, L. Jin, C. Wang, C. Chen, T. Song, and Y. Du, Biosens. Bioelectron., 2020, 159, 112202.

    Article  CAS  PubMed  Google Scholar 

  18. S. Strano-Rossi, E. Castrignanò, L. Anzillotti, S. Odoardi, F. De-Giorgio, A. Bermejo, and V. L. Pascali, Anal. Chim. Acta, 2013, 793, 61.

    Article  CAS  PubMed  Google Scholar 

  19. E. Tudela, K. Deventer, L. Geldof, and P. Van Eenoo, Drug Test. Anal., 2015, 7, 95.

    Article  CAS  PubMed  Google Scholar 

  20. S. Odoardi, E. Castrignanò, S. Martello, M. Chiarotti, and S. Strano-Rossi, Food Addit. Contam. A, 2015, 32, 635.

    CAS  Google Scholar 

  21. E. Boyaci, K. Gorynski, A. Rodriguez-Lafuente, B. Bojko, and J. Pawliszyn, Anal. Chim. Acta, 2014, 809, 69.

    Article  CAS  PubMed  Google Scholar 

  22. S.-H. Cho, H. J. Park, J. H. Lee, J.-A. Do, S. Heo, J. H. Jo, and S. Cho, J. Pharm. Biomed. Anal., 2015, 111, 138.

    Article  CAS  PubMed  Google Scholar 

  23. B. G. Keevil, Best Pract. Res. Clin. Endocrinol. Metab., 2013, 27, 663.

    Article  CAS  PubMed  Google Scholar 

  24. M. A. Jensen, Â. M. Hansen, P. Abrahamsson, and A. W. Norgaard, J. Chromatogr. B, 2011, 879, 2527.

    Article  CAS  Google Scholar 

  25. H. Liu, S. Dang, A. Gu, and B. Ye, Anal. Methods, 2021, 13, 3256.

    Article  CAS  PubMed  Google Scholar 

  26. M. Jauset-Rubio, M. L. Botero, V. Skouridou, G. l. B. l. Aktas, M. Svobodova, A. S. Bashammakh, M. S. El-Shahawi, A. O. Alyoubi, and C. K. O’Sullivan, ACS Omega, 2019, 4, 20188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. L. Zhang, J. Chen, Y. He, Y. Chi, and G. Chen, Talanta, 2009, 77, 1002.

    Article  CAS  PubMed  Google Scholar 

  28. C. Jin-feng, H. Yu and Z. Lan, Journal of Shenzhen University Science and Engineering, 2008, 358.

    Google Scholar 

  29. R. Jain and S. Sharma, Colloids Surf., A, 2013, 436, 178.

    Article  CAS  Google Scholar 

  30. J.-E. Im, J.-A. Han, B. K. Kim, J. H. Han, T. San Park, S. Hwang, S. I. Cho, W.-Y. Lee, and Y.-R. Kim, Surf. Coat. Technol., 2010, 205, S275.

    Article  CAS  Google Scholar 

  31. N. Jadon, R. Jain, S. Sharma, and K. Singh, Talanta, 2016, 161, 894.

    Article  CAS  PubMed  Google Scholar 

  32. N. Terui, B. Fugetsu and S. Tanaka, Anal. Sci., 2006, 22, 895.

    Article  CAS  PubMed  Google Scholar 

  33. R. Wada, S. Takahashi, H. Muguruma and N. Osakabe, Anal. Sci., 2020, 36, 1113.

    Article  CAS  PubMed  Google Scholar 

  34. E. E. S. Bruzaca, R. C. da Oliveira, M. S. S. Duarte, C. P. Sousa, S. Morais, A. N. Correia, and P. de lima-Neto, Anal. Methods, 2021, 13, 2124.

    Article  CAS  PubMed  Google Scholar 

  35. S. Yang, R. Yang, G. Li, L. Qu, J. Li, and L. Yu, J. Electroanal. Chem., 2010, 639, 77.

    Article  CAS  Google Scholar 

  36. R. K. L. Tan, S. P. Reeves, N. Hashemi, D. G. Thomas, E. Kavak, R. Montazami, and N. N. Hashemi, J. Mater. Chem. A, 2017, 5, 17777.

    Article  CAS  Google Scholar 

  37. K. Scott, in “Microbial Electrochemical and Fuel Cells”, 2016, Elsevier, 29.

    Book  Google Scholar 

  38. A. I. Vogel, “A Textbook of Quantitative Inorganic Analysis”, 3rd ed., 1966, Longmans Group Ltd, London.

    Google Scholar 

  39. G. Kefala, A. Economou, and A. Voulgaropoulos, Analyst, 2004, 129, 1082.

    Article  CAS  PubMed  Google Scholar 

  40. G. I. Mohammed, N. Khraibah, A. S. Bashammakh, and M. S. El-Shahawi, Microchem. J., 2018, 143, 474.

    Article  CAS  Google Scholar 

  41. D. T. Sawyer, J. M. Beebe, and W. R. Heineman, “Chemistry Experiments for Instrumental Methods”, 1984, John Wiley & Sons.

    Google Scholar 

  42. S. Hu, K. Wu, H. Yi, and D. Cui, Anal. Chim. Acta, 2002, 464, 209.

    Article  CAS  Google Scholar 

  43. S. Yang, R. Yang, G. Li, J. Li, and L. Qu, J. Chem. Sci., 2010, 122, 919.

    Article  CAS  Google Scholar 

  44. X. Xie, T. Gan, D. Sun, and K. Wu, Fullerenes, Nanotubes, Carbon Nanostructures, 2008, 16, 103.

    Article  CAS  Google Scholar 

  45. K. Raghu, A. Chandrasekar, and K. Sankaran, Int. J. Chem. Res., 2010, 2, 5.

    Article  CAS  Google Scholar 

  46. R. Wada, S. Takahashi, and H. Muguruma, Electrochim. Acta, 2020, 359, 136964.

    Article  CAS  Google Scholar 

  47. E. Laviron, L. Roullier, and C. Degrand, J. Electroanal. Chem. Interfacial Electrochem., 1980, 112, 11; E. Laviron, J. Electroanal. Chem. Interfacial Electrochem., 1979, 101, 19.

    Article  CAS  Google Scholar 

  48. A. J. Bard, L. R. Faulkner, J. Leddy, and C. G. Zoski, “Electrochemical Methods: Fundamentals and Applications”, 2000, Wiley, New York.

    Google Scholar 

  49. L. Zhao, H. Liu, and N. Hu, J. Colloid Interface Sci., 2006, 296, 204.

    Article  CAS  PubMed  Google Scholar 

  50. J. Miller and J. C. Miller, “Statistics and Chemometrics for Analytical Chemistry”, 2018, Pearson Education.

    Google Scholar 

  51. W. Ahmad, A. Al-Sibaai, A. Bashammakh, H. Alwael, and M. El-Shahawi, TrAC, Trends Anal. Chem., 2015, 72, 181.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad S. El-Shahawi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alourfi, N.M., Mohammed, G.I., Nassef, H.M. et al. A Highly Sensitive Modified Glassy Carbon Electrode with a Carboxylated Multi-walled Carbon Nanotubes/Nafion Nano Composite for Voltammetric Sensing of Dianabol in Biological Fluid. ANAL. SCI. 37, 1795–1802 (2021). https://doi.org/10.2116/analsci.21P167

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.21P167

Keywords

Navigation