Skip to main content
Log in

Natural Electrorheological Fluids Based on Cellulose Particles in Olive Oil: The Filler Size Effect

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The rheological behavior of 1 wt % suspensions of micro- and nanocellulose in olive oil is studied at various electric field strengths up to 7 kV/mm. The particle morphology is evaluated by optical and electron microscopy. Under an electric field, a contrast transition from a simply viscous behavior of fluids to a visco-elastic one is observed, while the suspensions show yield stress and storage modulus. A higher electrorheological response of suspensions filled with nanocellulose compared to microcellulose has been established. Based on the dependences of the static yield stress on the electric field strength, an analysis of the mechanism of the electrorheological effect has been provided. The use of completely natural components has shown promise of developing novel, environmentally friendly “smart” materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Warner, J.C., Cannon, A.S., and Dye, K.M., Green chemistry, Environmental Impact Assessment Revie, 2004, vol. 24, nos. 7–8, pp. 775–799. https://doi.org/10.1016/j.eiar.2004.06.006

    Article  Google Scholar 

  2. Anastas, P. and Eghbali, N., Green chemistry: Principles and practice, Chem. Soc. Rev., 2010, vol. 39, no. 1, pp. 301–312. https://doi.org/10.1039/b918763b

    Article  CAS  PubMed  Google Scholar 

  3. Converging Technologies for Improving Human Performance: Nanotechnology, Biotechnology, Information Technology and the Cognitive Science, Roco, M.C. and Bainbridge, W.S., Eds., Arlington, Virginia, 2002.

    Google Scholar 

  4. Kovalchuk, M.V., Naraikin, O.S., and Yatsishina, E.B., Nature-like technologies: New opportunities and new challenges, Vestn. Ross. Akad. Nauk, 2019, vol. 89, no. 5, pp. 455–465. https://doi.org/10.31857/S0869-5873895455-465

    Article  Google Scholar 

  5. Meng, H. and Li, G., A review of stimuli-responsive shape memory polymer composites, Polymer, 2013, vol. 54, no. 9, pp. 2199–2221. https://doi.org/10.1016/j.polymer.2013.02.023

    Article  CAS  Google Scholar 

  6. Musarurwa, H. and Tavengwa, N.T., Stimuli-responsive polymers and their applications in separation science, React. Funct. Polym., 2022, vol. 175, p. 105282. https://doi.org/10.1016/j.reactfunctpolym.2022.105282

    Article  CAS  Google Scholar 

  7. Bezsudnov, I.V., Khmelnitskaia, A.G., Kalinina, A.A., et al., Dielectric elastomer actuators: Materials and construction, Russ. Chem. Rev., 2023, vol. 92, no. 2, p. RCR5070. https://doi.org/10.57634/RCR5070

    Article  Google Scholar 

  8. Zaripov A.K., Elastic properties of magnetic fluids, Colloid J., 2021, vol. 83, no. 6, pp. 698–706. https://doi.org/10.1134/S1061933X2106017X

    Article  CAS  Google Scholar 

  9. Rusakov V.V. and Raikher Y.L., Nonlinear susceptibility of a viscoelastic ferrocolloid: Effect of displacement field, Colloid J., 2022, vol. 84, no. 6, pp. 741–753. https://doi.org/10.1134/S1061933X22700132

    Article  CAS  Google Scholar 

  10. Murashkevich, A.N., Alisienok, O.A., Zharskii, I.M., et al., Modified titania and titanium-containing composites as fillers exhibiting an electrorheological effect, Inorg. Mater., 2013, vol. 49, no. 2, pp. 165–171. https://doi.org/10.1134/S0020168513020209

    Article  CAS  Google Scholar 

  11. Agafonov, A.V., Kraev, A.S., Gerasimova, T.V., et al., Properties of electrorheological fluids based on nanocrystalline cerium dioxide, Russ. J. Inorg. Chem., 2017, vol. 62, no. 5, pp. 625–632. https://doi.org/10.1134/S0036023617050023

    Article  CAS  Google Scholar 

  12. Metayer, C., Sterligov, V.A., Meunier, A., et al. Field induced structures and phase separation in electrorheological and magnetorheological colloidal suspensions, J. Phys.: Condens. Matter, 2004, vol. 16, no. 38, pp. S3975–S3986. https://doi.org/10.1088/0953-8984/16/38/015

    Article  CAS  Google Scholar 

  13. Park, D.E., Chae, H.S., Choi, H.J., et al., Magnetite-polypyrrole core-shell structured microspheres and their dual stimuli-response under electric and magnetic fields, J. Mater. Chem. C, 2015, vol. 3, no. 13, pp. 3150–3158. https://doi.org/10.1039/c5tc00007f

    Article  CAS  Google Scholar 

  14. Kim, H.M., Jeong, J.Y., Kang, S.H., et al., Dual electrorheological and magnetorheological behaviors of po-ly(N-methyl aniline) coated ZnFe2O4 composite particles, Materials, 2022, vol. 15, p. 2677. https://doi.org/10.3390/ma15072677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. MR Fluid Brake, Akebono Brake Industry Co., Ltd. https://www.akebono-brake.com/english/product_tech-nology/technology/next_generation.html. Accessed March 15, 2023.

  16. Kuznetsov, N.M., Kovaleva, V.V., Belousov, S.I., et al., Electrorheological fluids: From historical retrospective to recent trends, Mater. Today Chem., 2022, vol. 26, p. 101066. https://doi.org/10.1016/j.mtchem.2022.101066

    Article  CAS  Google Scholar 

  17. Kuznetsov, N.M., Bakirov, A.V., Banin, E.P., et al., In situ X-ray analysis of montmorillonite suspensions in polydimethylsiloxane: Orientation in shear and electric field, Colloids Surf., A, 2021, vol. 622, p. 126663. https://doi.org/10.1016/j.colsurfa.2021.126663

    Article  CAS  Google Scholar 

  18. Kuznetsov, N.M., Vdovichenko, A.Y., Bakirov, A.V., et al., The size effect of faceted detonation nanodiamond particles on electrorheological behavior of suspensions in mineral oil, Diamond Relat. Mater., 2022, vol. 125, p. 108967. https://doi.org/10.1016/j.diamond.2022.108967

    Article  CAS  Google Scholar 

  19. Kuznetsov, N.M., Kovaleva, V.V., Zagoskin, Y.D., et al., Specific features of the porous polymeric particle composites application as fillers for electrorheological fluids, Nanobiotechnol. Rep., 2021, vol. 16, no. 6, pp. 840–846. https://doi.org/10.1134/S2635167621060148

    Article  CAS  Google Scholar 

  20. Ma, N. and Dong, X., Effect of carrier liquid on electrorheological performance and stability of oxalate group-modified TiO2 suspensions, J. Wuhan Univ. Technol.-Mat. Sci. Edit., 2017, vol. 32, no. 4, pp. 854–861. https://doi.org/10.1007/s11595-017-1679-6

    Article  CAS  Google Scholar 

  21. Sokolov, M.A., Kuznetsov, N.M., Belousov, S.I., et al., Effect of the dispersion medium viscosity on the electrorheological behavior of halloysite suspensions in polydimethylsiloxane, ChemChemTech, 2021, vol. 64, no. 11, pp. 79–85. https://doi.org/10.6060/ivkkt.20216411.6402

    Article  CAS  Google Scholar 

  22. Korobko, E.V. and Novikova, Z.A., Features of the mechanisms of conductivity of the electrorheological fluids with double doped TiO2 particles under external temperature effects, Front. Mater., 2019, vol. 6, pp. 1–9. https://doi.org/10.3389/fmats.2019.00132

    Article  Google Scholar 

  23. Li, X., Yan, G., Wang, J., et al., Effect of a temperature threshold on the electrorheological performance of ionic liquid crystal polyanilines, J. Mol. Liq., 2021, vol. 326, p. 115299. https://doi.org/10.1016/j.molliq.2021.115299

    Article  CAS  Google Scholar 

  24. Kovaleva, V.V., Kuznetsov, N.M., Vdovichenko, A.Y., et al., Effect of temperature on the electrorheological behavior of porous chitosan particles in polydimethylsiloxane, Dokl. Phys. Chem., 2022, vol. 502, pp. 23–27. https://doi.org/10.1134/S0012501622020026

    Article  CAS  Google Scholar 

  25. Wen, W., Huang, X., Yang, S., et al., The giant electrorheological effect in suspensions of nanoparticles, Nat. Mater., 2003, vol. 2, no. 11, pp. 727–730. https://doi.org/10.1038/nmat993

    Article  CAS  PubMed  Google Scholar 

  26. Shen, R., Wang, X., Lu, Y., et al., Polar-molecule-dominated electrorheological fluids featuring high yield stresses, Adv. Mater., 2009, vol. 21, no. 45, pp. 4631–4635. https://doi.org/10.1002/adma.200901062

    Article  CAS  Google Scholar 

  27. Li, J., Gong, X., Chen, S., et al., Giant electrorheological fluid comprising nanoparticles: Carbon nanotube composite, J. Appl. Phys., 2010, vol. 107, no. 9, p. 093507 (5). https://doi.org/10.1063/1.3407503

  28. Lee, S., Lee, J., Hwang, S.H., et al., Enhanced electroresponsive performance of double-shell SiO2/TiO2 hollow nanoparticles, ACS Nano, 2015, vol. 9, no. 5, p. 4939–4949. https://doi.org/10.1021/nn5068495

    Article  CAS  PubMed  Google Scholar 

  29. Lee, S., Yoon, C.-M., Hong, J.-Y., et al., Enhanced electrorheological performance of a graphene oxide-wrapped silica rod with a high aspect ratio, J. Mater. Chem. C, 2014, vol. 2, no. 30, pp. 6010–6016. https://doi.org/10.1039/C4TC00635F

    Article  CAS  Google Scholar 

  30. Noh J., Yoon, C.M., and Jang, J., Enhanced electrorheological activity of polyaniline coated mesoporous silica with high aspect ratio, J. Colloid Interface Sci., 2016, vol. 470, pp. 237–244. https://doi.org/10.1016/j.jcis.2016.02.061

    Article  CAS  PubMed  Google Scholar 

  31. Agafonov A.V., Kraev A.S., Teplonogova M.A., et al., First MnO2-based electrorheological fluids: High response at low filler concentration, Rheol. Acta, 2019, vol. 58, nos. 11–12, pp. 719–728. https://doi.org/10.1007/s00397-019-01175-7

    Article  CAS  Google Scholar 

  32. Oh, S.Y., Oh, M.K., and Kang, T.J. Characterization and electrorheological response of silica/titania-coated MWNTs synthesized by sol-gel process, Colloids Surf., A, 2013, vol. 436, pp. 354–362. https://doi.org/10.1016/j.colsurfa.2013.06.037

    Article  CAS  Google Scholar 

  33. Kuznetsov, N.M., Belousov, S.I., Kamyshinsky, R.A., et al., Detonation nanodiamonds dispersed in polydimethylsiloxane as a novel electrorheological fluid: Effect of nanodiamonds surface, Carbon, 2021, vol. 174, pp. 138–147. https://doi.org/10.1016/j.carbon.2020.12.014

    Article  CAS  Google Scholar 

  34. Kuznetsov, N.M., Zagoskin, Y.D., Vdovichenko, A.Y., et al., Enhanced electrorheological activity of porous chitosan particles, Carbohydr. Polym., 2021, vol. 256, p. 117530. https://doi.org/10.1016/j.carbpol.2020.117530

    Article  CAS  PubMed  Google Scholar 

  35. Choi, K., Gao, C.Y., Nam, J.D., et al., Cellulose-based smart fluids under applied electric fields, Materials, 2017, vol. 10, no. 9, pp. 1060–1081. https://doi.org/10.3390/ma10091060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kovaleva, V.V., Kuznetsov, N.M., Istomina, A.P., et al., Low-filled suspensions of α-chitin nanorods for electrorheological applications, Carbohydr. Polym., 2022, vol. 277, p. 118792. https://doi.org/10.1016/j.carbpol.2021.118792

    Article  CAS  PubMed  Google Scholar 

  37. Bogdanova, O.I. and Chvalun, S.N., Polysaccharide-based natural and synthetic nanocomposites, Polym. Sci. Ser. A, 2016, vol. 58, no. 5, pp. 629–658. https://doi.org/10.1134/S0965545X16050047

    Article  CAS  Google Scholar 

  38. Bogdanova, O.I., Istomina, A.P., and Chvalun, S.N., Composites based on chitin nanoparticles and biodegradable polymers for medical use: Preparation and properties, Nanobiotechnol. Rep., 2021, vol. 16, no. 1, pp. 42–68. https://doi.org/10.1134/s2635167621010031

    Article  CAS  Google Scholar 

  39. Davies, J.L., Blagbrough, I.S., and Staniforth, J.N., Electrorheological behaviour at low applied electric fields of microcrystalline cellulose in BP oils, Chem. Commun., 1998, vol. 19, pp. 2157–2158. https://doi.org/10.1039/a806533k

    Article  Google Scholar 

  40. Sung, J.H., Choi, H.J., and Jhon, M.S., Electrorheological response of biocompatible chitosan particles in corn oil, Mater. Chem. Phys., 2003, vol. 77, no. 3, pp. 778–783. https://doi.org/10.1016/S0254-0584(02)00167-0

    Article  CAS  Google Scholar 

  41. Hong, C.H., Sung, J.H., and Choi, H.J., Effects of medium oil on electroresponsive characteristics of chitosan suspensions, Colloid Polym. Sci., 2009, vol. 287, no. 5, pp. 583–589. https://doi.org/10.1007/s00396-009-2006-3

    Article  CAS  Google Scholar 

  42. Yavuz, M., Tilki, T., Karabacak, C., et al., Electrorheological behavior of biodegradable modified corn starch/corn oil suspensions, Carbohydr. Polym., 2010, vol. 79, no. 2, pp. 318–324. https://doi.org/10.1016/j.carbpol.2009.08.008

    Article  CAS  Google Scholar 

  43. Kuznetsov, N.M., Zagoskin, Y.D., Bakirov, A.V., et al., Is chitosan the promising candidate for filler in nature-friendly electrorheological fluids?, ACS Sustainable Chem. Eng., 2021, vol. 9, pp. 3802–3810. https://doi.org/10.1021/acssuschemeng.0c08793

    Article  CAS  Google Scholar 

  44. García-Morales, M., Fernández-Silva, S.D., Roman, C., et al., Preliminary insights into electro-sensitive ecolubricants: A comparative analysis based on nanocelluloses and nanosilicates in castor oil, Processes, 2020, vol. 8, no. 9, p. 1060(8). https://doi.org/10.3390/pr8091060

  45. Zarubina, A.N., Ivankin, A.N., Kuleznev, A.S., et al. Cellulose and nano cellulose. Review, For. Bull., 2019, no. 135, pp. 116–125. https://doi.org/10.18698/2542-1468-2019-5-116-125

  46. Zhang, W.L., Deng, L., Liu, J., et al., Unveiling the critical role of surface oxidation of electroresponsive behaviors in two-dimensional Ti3C2Tx MXenes, J. Phys. Chem. C, 2019, vol. 123, no. 9, pp. 5479–5487. https://doi.org/10.1021/acs.jpcc.8b11525

    Article  CAS  Google Scholar 

  47. Jang, H.S., Kwon, S.H., Lee, J.H., et al., Facile fabrication of core-shell typed silica/poly(diphenylamine) composite microparticles and their electro-response, Polymer, 2019, vol. 182, p. 121851(9). https://doi.org/10.1016/j.polymer.2019.121851

  48. Ikazaki, F., Kawai, A., Uchida, K., et al., Mechanisms of electrorheology: The effect of the dielectric property, J. Phys. D: Appl. Phys., 1998, vol. 31, no. 3. pp. 336–347. https://doi.org/10.1088/0022-3727/31/3/014

    Article  CAS  Google Scholar 

  49. Goodacre, R., Vaidyanathan, S., Bianchi, G., and Kell, D.B., Metabolic profiling using direct infusion electrospray ionisation mass spectrometry for the characterisation of olive oils, Analyst, 2002, vol. 127, no. 11, pp. 1457–1462. https://doi.org/10.1039/B206037J

Download references

ACKNOWLEDGMENTS

The authors acknowledge support from the resource centers “Nanozond,” “Electrophysics” and “Polymer” of the National Research Center “Kurchatov Institute” for the studies. The authors are grateful to Dr. R.A. Kamyshinsky for electron microscopy studies and A.A. Stupnikov for assistance in optical microscopy studies, as well as Dr. S.V. Aleshin for mass spectrometry study.

Funding

The study was performed within the framework of the state assignment of the National Research Center “Kurchatov Institute.” The study of the cellulose particles morphology was supported by the Russian Science Foundation (grant no.: 22-73-10081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Kuznetsov.

Ethics declarations

The authors declare that they have no conflicts of interes-t.

APPENDIX A

APPENDIX A

NATURAL ELECTRORHEOLOGICAL FLUIDS BASED ON CELLULOSE PARTICLES IN OLIVE OIL: THE FILLER SIZE EFFECT

Fig. 4.
figure 4

Mass spectrum of olive oil in the mass range 100–1000, positive ionization.

Olive oil was analyzed according to the previously proposed approach [49]. The sample was dissolved in methanol at a ratio of 1/1000 and analyzed by mass spectrometry using an Agilent 6495 (United States). As a result of the analysis, ions typical for olive oil were found. The ammonium adduct of triolein C57H104O6 (m/z = 904.8) is the main triglyceride of olive oil, the product of its further dissociation (m/z = 603.1; 878.1), and the ammonium triglyceride adduct POO (palmitic and two oleic residues) (m/z = 875.1), which is the second most abundant triglyceride in olive oil, were detected.

Fig. 5.
figure 5

Loss modulus (G '') versus strain for the 1 wt % suspension of MCC in olive oil at different electric field strengths, measurement frequency is 10 Hz. The gray dotted line marks the strain value, which is further used to find the frequency dependences of the storage and loss moduli.

Fig. 6.
figure 6

Size distribution histograms of MCC particles: length (a) and diameter (b). Images of both optical and scanning electron microscopy were used for the analysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, N.M., Kovaleva, V.V., Vdovichenko, A.Y. et al. Natural Electrorheological Fluids Based on Cellulose Particles in Olive Oil: The Filler Size Effect. Colloid J 85, 408–417 (2023). https://doi.org/10.1134/S1061933X23600276

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X23600276

Navigation