Skip to main content
Log in

Efficiency of the Use of Commercial Superhydrophobic Coatings in the Fields of Marine Industry

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The antifouling and condensation properties of the Rust-Oleum Neverwet and Ultra Ever Dry systems have been experimentally studied in order to employ the effect of superhydrophobicity under marine conditions. The experiments have shown that the deposited coatings hinder the appearance of first colonies at contact angles θС ≥ 130°. The rate of condensation on a superhydrophobic surface is increased by 8–13% relative to that on an untreated surface. However, at the initial stage, the increase in the condensation rate is due to the larger specific area of the rough surface as compared with the smooth surface. A high heat-transfer coefficient can be provided by the transition of droplets into the Cassie–Baxter state, with this transition depending on the texture of a surface and the properties of water vapor. Nevertheless, there are substantial problems that must be solved to make such coatings applicable. First, their microstructure must be rather strong to withstand the conditions of a marine medium. Second, the coating must remain superhydrophobic for a long time. Additional studies and elaborations must be carried out before employing superhydrophobic coatings under real conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Kiiko, P.I., Chernykh, T.N., Ul’rikh, D.V., and Kriushin, M.V., Izv. Vyssh. Uchebn. Zaved. Stroit., 2021, no. 6, p. 61.

  2. Shilova, O.A., Tsvetkova, I.N., Krasil’nikova, L.N., Ladilina, E.Yu., Lyubova, T. S., and Kruchinina, I.Yu., Transp. Sist. Tekhnol., 2015, vol. 1, no. 1, p. 91.

    Google Scholar 

  3. Krasil'nikova, L.N., Tsvetkova, I.N., Okovantsev, A.N., and Shilova, O.A., Fiz. Khim. Stekla, 2018, vol. 44, no. 6S, p.97.

    Article  Google Scholar 

  4. Genzer, J. and Efimenko, K., Biofouling, 2006, vol. 22, p. 339.

    Article  CAS  Google Scholar 

  5. Ferrari, M. and Benedetti, A., Adv. Colloid Interface Sci., 2015, vol. 222, p. 91.

    Article  Google Scholar 

  6. Samaha, M.A., Tafreshi, H.V., and Gad-el-Hak, M., C. R. Mec., 2012, vol. 340, p. 18.

    Article  Google Scholar 

  7. Kozhukhova, M.I., Flores-Vivian, I., Rao, S., Strokova, V.V., and Sobolev, K.G., Stroit. Mater., 2014, no. 3, p. 26.

  8. Le, M.D., Belukhina, P.O., Belukhina, O.O., Klimov, V.V., Bryuzgin, E.V., Navrotskii, A.V., and Novakov, I.A., Izv. Volgograd. Gos. Tekh. Univ., 2017, no. 11, p. 117.

  9. Emelyanenko, A.M., Kaminskii, V.V., Pytskii, I.S., Domantovsky, A.G., Emelyanenko, K.A., Aleshkin, A.V., and Boinovich, L.B., Bull. Exp. Biol. Med., 2020, vol. 168, p. 488.

    Article  CAS  Google Scholar 

  10. Boinovich, L.B., Kaminsky, V.V., Domantovsky, A.G, Emelyanenko, K.A., Aleshkin, A.V., Zulkarneev, E.R., Kiseleva, I.A., and Emelyanenko, A.M., Langmuir, 2019, vol. 35, p. 2832.

    Article  CAS  Google Scholar 

  11. Pu, X., Li, G., and Huang, H., Biol. Open, 2016, vol. 5, p. 389.

    Article  Google Scholar 

  12. Liu, T., Yin, B., He, T., Guo, N., Dong, L., and Yin, Y., ACS Appl. Mater. Interfaces, 2012, vol. 4, p. 4683.

    Article  CAS  Google Scholar 

  13. Li, J., Wang, G., Meng, Q., Ding, Ch., Jiang, H., and Fang, Y., Appl. Surf. Sci., 2014, vol. 315, p. 407.

    Article  CAS  Google Scholar 

  14. Zhang, B., Li, J., Zhao, X., Hu, X., Yang, L., Wang, N., Li, Y., and Hou, B., Chem. Eng. J., 2016, vol. 306, p. 441.

    Article  CAS  Google Scholar 

  15. Sun, K., Yanga, H., Xue, W., He, A., Zhu, D., Liu, W., Adeyemi, K., and Cao, Yu., Appl. Surf. Sci., 2018, vol. 436, p. 263.

    Article  CAS  Google Scholar 

  16. Ekblad, T., Bergstrom, G., Ederth, T., Conlan, S.L., Mutton, R., Clare, A.S., Wang, S., Liu, Y., Zhao, Q., D’Souza, F., Donnelly, G. T., Willemsen, P.R., Pettitt, M.E., Callow, M.E., Callow, J.A., and Liedberg, B., Biomacromolecules, 2008, vol. 9, p. 2775.

    Article  CAS  Google Scholar 

  17. Anikin, S.A. and Krivopalova, E.V., Usp. Khim. Khim. Tekhnol., 2013, vol. 27, no. 6, p. 87.

    Google Scholar 

  18. Ashrafi-Habibabadi, A. and Moosavi, A., Int. J. Heat Mass Transfer, 2019, vol. 134, p. 680.

    Article  Google Scholar 

  19. Sokuler, M., Auernhammer, G.K., Liu, C., and Bonaccurso, E., Europhys. Lett., 2010, vol. 89, p. 36004.

    Article  Google Scholar 

  20. Lafuma, A. and Quere, D., Nat. Mater., 2003, vol. 2, p. 457.

    Article  CAS  Google Scholar 

  21. Narhe, R.D. and Beysens, D.A., Phys. Rev. Lett., 2004, vol. 93, no. 7, p. 76.

    Article  Google Scholar 

  22. Wier, K.A. and McCarthy, T.J., Langmuir, 2006, vol. 22, p. 2433.

    Article  CAS  Google Scholar 

  23. Sikarwar, B.S., Battoo, N.K., Khandekar, S., and Muralidhar, K., Int. J. Heat Mass Transfer, 2011, vol. 133, p. 216.

    Google Scholar 

  24. Xie, J., Xu, J., Li, X., and Liu, H., Int. J. Heat Mass Transfer, 2019, vol. 129, p. 86.

    Article  CAS  Google Scholar 

  25. Miljkovic, N., Enright, R., and Wang, E.N., ACS Nano, 2012, vol. 6, p. 1776.

    Article  CAS  Google Scholar 

  26. Boreyko, J.B. and Chuan-Hua, C., Phys. Rev. Lett., 2009, vol. 103, p. 184501.

    Article  Google Scholar 

  27. Gong, X.J., Gao, X.F., and Jiang, L., Adv. Mater., 2017, vol. 29, p. 1703002.

    Article  Google Scholar 

  28. Zhu, J., Luo, Y.T., Tian, J., Li, J., and Gao, X.F., ACS Appl. Mater. Interfaces, 2015, vol. 7, p. 10660.

    Article  CAS  Google Scholar 

  29. Kim, H. and Nam, Y., Int. J. Heat Mass Transfer, 2016, vol. 93, p. 286.

    Article  CAS  Google Scholar 

  30. Liu, H., Wang, Y., Huang, J., Chen, Z., Chen, G., and Lai, Y., Adv. Funct. Mater., 2018, vol. 28, p. 1707415.

    Article  Google Scholar 

  31. Gupta, R., Vaikuntanathan, V., and Sivakumar, D., Colloids Surf., A, 2016, vol. 500, p. 45.

    Article  CAS  Google Scholar 

  32. Jiang, L., Park-Lee, K.J., Clinton, R.M., Tang, Z., Breedveld, V., and Hess, D.W., Surf. Coat. Technol., 2017, vol. 328, p. 182.

    Article  CAS  Google Scholar 

  33. Zhao, T. and Jiang, L., Colloids Surf., B, 2018, vol. 161, p. 324.

    Article  CAS  Google Scholar 

  34. Ukolov, A.I. and Popova, T.N., Ekol. Vestn. Nauchn. Tsentr. Chernomor. Ekon. Sotrudn., 2018, vol. 15, no. 2, p. 102.

    Google Scholar 

  35. ElSherbini, A.I. and Jacobi, A.M., J. Colloid Interface Sci., 2006, vol. 299, p. 841.

    Article  CAS  Google Scholar 

  36. Amrei, M.M. and Tafreshi, H.V., Colloids Surf., A, 2015, vol. 465, p. 87.

    Article  CAS  Google Scholar 

  37. Emami, B. Bucher, T.M., Vahedi Tafreshi, H., Pestov, D., Gad-el-Hak, M., and Tepper, G.C., Colloids Surf., A, 2011, vol. 385, p. 95.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Ukolov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kirilin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ukolov, A.I., Popova, T.N. Efficiency of the Use of Commercial Superhydrophobic Coatings in the Fields of Marine Industry. Colloid J 84, 465–476 (2022). https://doi.org/10.1134/S1061933X22040111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X22040111

Navigation