Skip to main content
Log in

“Nonresonance” Enhancement of Optical Absorption in Organic Films with Plasmonic Particles

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Visible light absorption by organic chromophores enhanced due to their interaction with metal nanoparticles is of great interest as an approach to increasing the efficiency of photovoltaic cells and photocatalysts. Since chromophores capable of aromatic stacking interactions are often used as organic components, investigation of the conditions for the enhancement of optical absorption in systems based thereon is of fundamental importance. Ultrathin layered systems based on perylene-3,4,9,10-tetracarboxylic acid isopentyldiimide and diverse two-dimensional plasmonic assemblies of gold nanoparticles are studied in this work. An additive spectral behavior is observed for a system containing individual (nonaggregated) nanoparticles in spite of the coinciding absorption spectra of the components. At the same time, enhancement of optical absorption by 35% is realized in a system based on assemblies of nanoparticle aggregates in the absence of the coincidence between the spectral characteristics of the plasmonic and organic components. These results provide new opportunities to control the interaction of light with ultrathin films of chromophoric dyes used to create organic optical and optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Halas, N.J., Lal, S., Chang, W.S., Link, S., and Nordlander, P., Chem. Rev., 2011, vol. 111, p. 3913.

    Article  CAS  Google Scholar 

  2. Klinkova, A., Choueiri, R.M., and Kumacheva, E., Chem. Soc. Rev., 2014, vol. 43, p. 3976.

    Article  CAS  Google Scholar 

  3. Amendola, V., Pilot, R., Frasconi, M., Maragò, O.M., and Iatì, M.A., J. Phys. Condens. Matter, 2017, vol. 29, p. 203002.

    Article  Google Scholar 

  4. Bosnick, K., Maillard, M., and Brus, L., J. Phys. Chem. B, 2003, vol. 107, p. 9964.

    Google Scholar 

  5. Futamata, M., Faraday Discuss., 2006, vol. 132, p. 45.

    Article  CAS  Google Scholar 

  6. Le Ru, E.C., Etchegoin, P.G., and Meyer, M., J. Chem. Phys., 2006, vol. 125, p. 204701.

    Article  CAS  Google Scholar 

  7. Osawa, M., Bull. Chem. Soc. Jpn., 1997, vol. 70, p. 2861.

    Article  CAS  Google Scholar 

  8. Errano, S., Adrid, M., and Pain, S., Surface-Enhanced Vibrational Spectroscopy, Chichester: Wiley, 2007.

    Google Scholar 

  9. Chen, Y., Munechika, K., and Ginger, D.S., Nano Lett., 2007, vol. 7, p. 690.

    Article  CAS  Google Scholar 

  10. El-Bashir, S.M., Barakat, F.M., and AlSalhi, M.S., J. Lumin., 2013, vol. 143, p. 43.

    Article  CAS  Google Scholar 

  11. Lieberman, I., Shemer, G., Fried, T., Kosower, E.M., and Markovich, G., Angew. Chem., Int. Ed., 2008, vol. 47, p. 4855.

    Article  CAS  Google Scholar 

  12. Schaadt, D.M., Feng, B., and Yu, E.T., Appl. Phys. Lett., 2005, vol. 86, p. 063106.

    Article  Google Scholar 

  13. Zasedatelev, A.V., Dubinina, T.V., Krichevsky, D.M., Krasovskii, V.I., Gak, V.Y., Pushkarev, V.E., Tomilova, L.G., and Chistyakov, A.A., J. Phys. Chem. C, 2013, vol. 120, p. 1816.

    Article  Google Scholar 

  14. Mandal, P. and Sharma, S., Renew. Sustain. Energy Rev., 2016, vol. 65, p. 537.

    Article  CAS  Google Scholar 

  15. Jang, Y.H., Jang, Y.J., Kim, S., Quan, L.N., Chung, K., and Kim, D.H., Chem. Rev., 2016, vol. 116, p. 14982.

    Article  CAS  Google Scholar 

  16. Lim, E.L., Yap, C.C., Teridi, M.A.M., Teh, C.H., Yusoff, M.A.R., and Jumali, M.H.H., Org. Electron., 2016, vol. 36, no. 9, p. 12.

    Article  CAS  Google Scholar 

  17. Hou, W. and Cronin, S.B., Adv. Funct. Mater., 2013, vol. 23, p. 1612.

    Article  CAS  Google Scholar 

  18. Chen, X., Yang, X., Fu, W., Xu, M., and Chen, H., Mater. Sci. Eng., 2013, vol. 178, p. 53.

    Article  CAS  Google Scholar 

  19. Standridge, S.D., Schatz, G.C., and Hupp, J.T., J. Am. Chem. Soc., 2009, vol. 131, p. 8407.

    Article  CAS  Google Scholar 

  20. Xu, Q., Liu, F., Liu, Y., Cui, K., Feng, X., Zhang, W., and Huang, Y., Sci. Rep., 2013, vol. 3, p. 2112.

    Article  Google Scholar 

  21. Wang, C.C.D., Choy, W.C.H., Duan, C., Fung, D.D.S., Sha, W.E.I., Xie, F.-X., Huang, F., and Cao, Y., J. Mater. Chem., 2012, vol. 22, p. 1206.

    Article  CAS  Google Scholar 

  22. Xue, M., Li, L., Tremolet De Villers, B.J., Shen, H., Zhu, J., Yu, Z., Stieg, A.Z., Pei, Q., Schwartz, B.J., and Wang, K.L., Appl. Phys. Lett., 2011, vol. 98, p. 253302.

    Article  Google Scholar 

  23. Yakimov, A. and Forrest, S.R., Appl. Phys. Lett., 2002, vol. 80, p. 1667.

    Article  CAS  Google Scholar 

  24. Xu, Q., Liu, F., Meng, W., and Huang, Y., SPIE Micro + Nano Mater. Devices Appl., 2013, vol. 8923, p. 892334.

    Google Scholar 

  25. Rai, V.N., Srivastava, A.K., Mukherjee, C., and Deb, S.K., Appl. Opt., 2012, vol. 51, p. 2606.

    Article  CAS  Google Scholar 

  26. Atwater., H.A. and Polman, A., Nat. Mater., 2010, vol. 9, p. 865.

  27. Daniel, M. and Astruc, D., Chem. Rev., 2004, vol. 104, p. 293.

    Article  CAS  Google Scholar 

  28. Lee, K.S. and El-Sayed, M.A., J. Phys. Chem. B, 2005, vol. 109, p. 20331.

    Article  CAS  Google Scholar 

  29. Huang, X., El-Sayed, I.H., Qian, W., and El-Sayed, M.A., J. Am. Chem. Soc., 2006, vol. 128, p. 2115.

    Article  CAS  Google Scholar 

  30. Link, S. and El-Sayed, M.A., J. Phys. Chem. B, 1999, vol. 103, p. 4212.

    Article  CAS  Google Scholar 

  31. Niu, W., Chua, Y.A.A., Zhang, W., Huang, H., and Lu, X., J. Am. Chem. Soc., 2015, vol. 137, p. 10460.

    Article  CAS  Google Scholar 

  32. Kelly, K.L., Coronado, E., Zhao, L.L., and Schatz, G.C., J. Phys. Chem. B, 2003, vol. 107, p. 668.

    Article  CAS  Google Scholar 

  33. Zvyagina, A.I., Ezhov, A.A., Ivanov, V.K., Arslanov, V.V., and Kalinina, M.A., J. Mater. Chem. C, 2015, vol. 3, p. 11801.

    Article  CAS  Google Scholar 

  34. Babenko, D.I., Ezhov, A.A., Turygin, D.S., Ivanov, V.K., Arslanov, V.V., and Kalinina, M.A., Langmuir, 2012, vol. 28, p. 125.

    Article  CAS  Google Scholar 

  35. Zvyagina, A.I., Ezhov, A.A., Meshkov, I.N., Ivanov, V.K., Birin, K.P., König, B., Gorbunova, Y.G., Tsivadze, A.Y., Arslanov, V.V., and Kalinina, M.A., J. Mater. Chem., 2018, vol. 6, p. 1413.

    Article  CAS  Google Scholar 

  36. Pal, S.K., Chatterjee, H., and Ghosh, S.K., RSC Adv., 2019, vol. 9, p. 42145.

    Article  CAS  Google Scholar 

  37. Satya Bharati, M.S., Lakshmi, P., Byram, C., and Rao, S.V., Work. Recent Adv. Photonics (WRAP), 2019, p. 1.

  38. Turkevich, J. and Cooper, P.H.J., Discuss. Faraday Soc., 1951, vol. 55, p. 55.

  39. Würthner, F., Thalacker, C., Diele, S., and Tschierske, C., Chemistry, 2001, vol. 7, p. 2245.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to М.О. Zubkov for the help in the work. The work was performed using the equipment of the Center for Collective Use of the Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences.

Funding

The work was performed within the state order of the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Kalinina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Muravev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zvyagina, A.I., Ezhov, A.A., Kuz’mina, N.V. et al. “Nonresonance” Enhancement of Optical Absorption in Organic Films with Plasmonic Particles. Colloid J 83, 574–581 (2021). https://doi.org/10.1134/S1061933X21050148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X21050148

Navigation