Skip to main content
Log in

Luminescence of Dye Molecules in Polymer Films with Plasmonic Nanoparticles

  • Published:
Journal of Applied Spectroscopy Aims and scope

The effect of plasmonic nanoparticles (NPs) on the fluorescence and phosphorescence intensity of organic dye molecules was studied theoretically and experimentally. A theoretical model that takes into account nonradiative transfer of excitation energy from a molecule to an NP and the changes in the rates of spontaneous emission and light absorption by a molecule near an NP was proposed to calculate the luminescence intensity of a molecule in the presence of a plasmonic NP. Numerical estimates for an erythrosine molecule and a silver NP showed that the greatest increase in luminescence was observed at distances of 4–8 nm between the molecule and the NP surface. Experimentally observed changes in luminescence spectra and shortening of the erythrosine triplet state lifetime in poly(vinyl alcohol) films doped with silver NPs were explained using the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, Plasmonics, 9, 781–799 (2014); https://doi.org/10.1007/s11468-013-9660-5.

  2. P. Gu, D. J. S. Birch, and Y. Chen, Methods Appl. Fluoresc., 2, Article ID 024004 (2014); https://doi.org/10.1088/2050-6120/2/2/024004.

  3. Y. Wang and T. Ding, Nanoscale, 11, 10589–10590 (2019); https://doi.org/10.1039/C9NR03725J.

  4. K. I. Kniazev, R. E. Yakunenkov, N. A. Zulina, M. I. Fokina, R. D. Nabiullina, and N. A. Toropov, Opt. Spectrosc., 125, 578–581 (2018); https://doi.org/10.1134/S0030400X18100090.

  5. S. Murai, S. Oka, S. I. Azzam, A. V. Kildishev, S. Ishii, and K. Tanaka, Opt. Express, 27, No. 4, 5083–5096 (2019); https://doi.org/10.1364/OE.27.005083.

    Article  ADS  Google Scholar 

  6. A. N. Kamalieva, N. A. Toropov, K. V. Bogdanov, and T. A. Vartanyan, Opt. Spectrosc., 124, 319–322 (2018); https://doi.org/10.1134/S0030400X18030153.

  7. Y. Bian, S. Liu, Y. Zhang, Y. Lui, X. Yang, S. Lou, E. Wu, B. Wu, X. Zhang, and Q. Jin, Nanoscale Res. Lett., 16, 90 (2021); https://doi.org/10.1186/s11671-021-03546-7.

  8. D. Temirbayeva, N. Ibrayev, and M. Kucherenko, J. Lumin., 243, Article ID 118642 (2022); https://doi.org/10.1016/j.jlumin.2021.118642.

  9. T. Ribeiro, C. Baleizao, and J. P. S. Farinha, Sci. Rep., 7, 2440 (2017); https://doi.org/10.1038/s41598-017-02678-0.

  10. V. V. Klimov, Phys.-Usp., 46, No. 9, 979–984 (2003); https://doi.org/10.1070/PU2003v046n09ABEH001657.

  11. V. V. Klimov and V. S. Letokhov, Laser Phys., 15, 61–73 (2005).

    Google Scholar 

  12. D. V. Guzatov, S. V. Vaschenko, V. V. Stankevich, A. Ya. Lunevich, Yu. F. Glukhov, and S. V. Gaponenko, J. Phys. Chem. C, 116, 10723–10733 (2012); https://doi.org/10.1021/jp301598w.

  13. M. G. Kucherenko, V. M. Nalbandyan, and T. M. Chmereva, J. Opt. Technol., 88, No. 9, 489–498 (2021); https://doi.org/10.1364/JOT.88.000489.

  14. M. G. Kucherenko, V. M. Nalbandyan, and T. M. Chmereva, J. Opt. Technol., 130, No. 5, 593–601 (2022); https://doi.org/10.21883/EOS.2022.05.54445.9-22.

  15. J. C. Ostrowski, A. Mikhailovsky, D. A. Bussian, M. A. Summers, S. K. Buratto, and G. C. Bazan, Adv. Funct. Mater., 16, 1221–1227 (2006); https://doi.org/10.1002/adfm.200500293.

  16. N. L. Pacioni, M. Gonzalez-Bejar, E. Alarcon, K. L. McGilvray, and J. C. Scaiano, J. Am. Chem. Soc., 132, No. 18, 6298–6299 (2010); https://doi.org/10.1021/ja101925d.

    Article  Google Scholar 

  17. C. Seo, J. Lee, M. S. Kim, Y. Lee, J. Jung, H.-W. Shin, T. K. Ahn, G. Sun, J. Kim, and J. Kim, Chem. Phys. Lett., 676, 134–139 (2017); https://doi.org/10.1016/j.cplett.2017.03.061.

  18. C. Wang, X. Zhang, K. Liu, X. Dai, C. Yang, S. Guo, and H. Su, J. Phys. Chem. C, 123, 27717–27724 (2019); https://doi.org/10.1021/acs.jpcc.9b06094.

  19. P. Song, J.-H. Wang, M. Zhang, F. Yang, H.-J. Lu, B. Kang, J.-J. Xu, and H.-Y. Chen, Sci. Adv., 4, Article ID eaat0292 (2018); https://doi.org/10.1126/sciadv.aat0292.

  20. I. Yu. Goliney, V. I. Sugakov, L. Valkunas, and G. V. Vertsimakha, Chem. Phys., 404, 116–122 (2012); https://doi.org/10.1016/j.chemphys.2012.03.011.

  21. T. M. Chmereva, M. G. Kucherenko, and F. Yu. Mushin, Russ. Phys. J., 65, No. 7, 1081–1093 (2022); https://doi.org/10.1007/s11182-022-02735-w.

    Article  Google Scholar 

  22. O. Svelto, Principles of Lasers, 3rd edn., Plenum Publishing Corp. (1989) [Russian translation, Mir, Moscow (1990), pp. 34–38].

  23. S. P. McGlynn, T. Azumi, and M. Kinoshita, Molecular Spectroscopy of the Triplet State, Prentice-Hall International Series in Chemistry, Prentice-Hall, Englewood Cliff s, N.J. (1969), 433 pp. [Russian translation, Mir, Moscow (1972), pp. 218–221, 284–286].

  24. L. Novotny and B. Hecht, Principles of Nano-Optics, Cambridge University Press, New York (2006) [Russian translation, Fizmatlit, Moscow (2009), pp. 295–297].

  25. V. V. Klimov, Nanoplasmonics [in Russian], Fizmatlit, Moscow (2009), pp. 60–63.

    Google Scholar 

  26. A. Penzkofer, A. Tyagi, E. Slyusareva, and A. Sizykh, Chem. Phys., 378, 58–65 (2010); https://doi.org/10.1016/j.chemphys.2010.10.001.

  27. G. N. R. Tripatni and V. Clements, J. Phys. Chem., 107, 11125–11132 (2003); https://doi.org/10.1021/jp030546i.

  28. O. V. Dementʹeva, A. V. Malʹkovskii, M. A. Filippenko, and V. M. Rudoi, Kolloidn. Zh., 70, No. 5, 607–619 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Chmereva.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 91, No. 1, pp. 5–14, January–February, 2024.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chmereva, T.M., Kucherenko, M.G., Mushin, F.Y. et al. Luminescence of Dye Molecules in Polymer Films with Plasmonic Nanoparticles. J Appl Spectrosc 91, 1–9 (2024). https://doi.org/10.1007/s10812-024-01682-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-024-01682-3

Keywords

Navigation