Skip to main content
Log in

Neural Network Based Modeling of Grain Boundary Complexions Localized in Simple Symmetric Tilt Boundaries Σ3 (111) and Σ5 (210)

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

A method is proposed for the neural network based analysis of the existence and stability of grain boundary complexions formed at high-symmetry tilt boundaries Σ3 (111) and Σ5 (210) in a polycrystalline Ni(Bi) solid solution. This method is based on the use of reference interparticle interaction potentials constructed within the framework of the density functional theory in combination with the structural capabilities of an artificial two-level self-learning neural network. The absolute error in determining potential energy by the neurosystem analysis is 0.012 eV/atom. The values of the formation enthalpy of grain boundary complexions for Σ3 and Σ5 boundaries are in rather good agreement with the published results of simulating this system and experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Randle, V., Scr. Mater., 2006, vol. 54, p. 1011.

    Article  CAS  Google Scholar 

  2. Watanabe, T., J. Mater. Sci., 2011, vol. 46, p. 4095.

    Article  CAS  Google Scholar 

  3. Kim, C.S., Hu, Y., Rohrer, G.S., and Randle, V., Scr. Mater., 2005, vol. 52, p. 633.

    Article  CAS  Google Scholar 

  4. Rohrer, G.S., Randle, V., Kim, C.S., and Hu, Y., Acta Mater., 2006, vol. 54, p. 4489.

    Article  CAS  Google Scholar 

  5. Duscher, G., Chisholm, M.F., Alber, U., and Ruhle, M., Nat. Mater., 2004, vol. 3, p. 621.

    Article  CAS  Google Scholar 

  6. Yamaguchi, M., Motoyuki, S., and Hideo, K., Science (Washington, D. C.), 2005, vol. 307, p. 393.

    Article  CAS  Google Scholar 

  7. Luo, J., Cheng, H., Asl, K.M., Kiely, C.J., and Harmer, M.P., Science (Washington, D. C.), 2011, vol. 333, p. 1730.

    Article  CAS  Google Scholar 

  8. Yu, Z., Cantwell, P.R., Gao, Q., Yin, D., Zhang, Y., Zhou, N., Rohrer, G.S., Widom, M., Luo, J., and Harmer, M.P., Science (Washington, D. C.), 2017, vol. 358, p. 97.

    Article  CAS  Google Scholar 

  9. Dillon, S.J., Tang, M., Carter, W.C., and Harmer, M.P., Acta Mater., 2007, vol. 55, p. 6208.

    Article  CAS  Google Scholar 

  10. Cantwell, P.R., Tang, M., Dillon, S.J., Luo, J., Rohrer, G.S., and Harmer, M.P., Acta Mater., 2014, vol. 62, p. 1.

    Article  CAS  Google Scholar 

  11. Zhou, N., Hu, T., and Luo, J., Curr. Opin. Solid State Mater. Sci., 2016, vol. 20, p. 268.

    Article  CAS  Google Scholar 

  12. Gao, Q. and Widom, M., Curr. Opin. Solid State Mater. Sci., 2016, vol. 20, p. 240.

    Article  CAS  Google Scholar 

  13. Kaplan, W.D., Chatain, D., Wynblatt, P., and Carter, W.C., J. Mater. Sci., 2013, vol. 48, p. 5681.

    Article  CAS  Google Scholar 

  14. Frolov, T., Olmsted, D.L., Asta, M., and Mishin, Y., Nat. Commun., 2013, vol. 4, p. 1897.

    Article  Google Scholar 

  15. Frolov, T., Divinski, S.V., Asta, M., and Mishin, Y., Phys. Rev. Lett., 2013, vol. 110, p. 1.

    Article  Google Scholar 

  16. Frolov, T., Asta, M., and Mishin, Y., Curr. Opin. Solid State Mater. Sci., 2016, vol. 20, p. 308.

    Article  CAS  Google Scholar 

  17. Kang, J., Glatzmaier, G.C., and Wei, S.H., Phys. Rev. Lett., 2013, vol. 111, p. 1.

    Google Scholar 

  18. Gao, Q. and Widom, M., Phys. Rev. B, 2014, vol. 90, p. 1.

    Google Scholar 

  19. Luo, G.-N., You, Y.-W., Liu, C.S., Wang, Z., Kong, X.-S., Wu, X., Chen, J.-L., and Lu, G.-H., Acta Mater., 2016, vol. 120, p. 315.

    Article  Google Scholar 

  20. Wu, X., Kong, X.S., You, Y.W., Liu, W., Liu, C.S., Chen, J.L., and Luo, G.N., J. Appl. Phys., 2016, vol. 120, p. 095 901.

    Article  Google Scholar 

  21. Li, Y., Korzhavyi, P.A., Sandström, R., and Lilja, C., Phys. Rev. Mater., 2017, vol. 1, p. 1.

    Google Scholar 

  22. Hu, C. and Luo, J., Scr. Mater., 2019, vol. 158, p. 11.

    Article  CAS  Google Scholar 

  23. Behler, J. and Parrinello, M., Phys. Rev. Lett., 2007, vol. 98, p. 1.

    Article  Google Scholar 

  24. Cybenko, G., Math. Control. Signals Syst., 1989, vol. 2, p. 303.

    Article  Google Scholar 

  25. Artrith, N., Urban, A., and Ceder, G., J. Chem. Phys., 2018, vol. 148, p. 241 711.

    Article  Google Scholar 

  26. Jindal, S., Chiriki, S., and Bulusu, S.S., J. Chem. Phys., 2017, vol. 146, p. 204 301.

    Article  Google Scholar 

  27. Natarajan, S. and Behler, J., J. Phys. Chem. C, 2017, vol. 121, p. 4368.

    Article  Google Scholar 

  28. Shakouri, K., Behler, J., Meyer, J., and Kroes, G.J., J. Phys. Chem. Lett., 2017, vol. 8, p. 2131.

    Article  CAS  Google Scholar 

  29. Sanville, E., Bholoa, A., Smith, R., and Kenny, S.D., J. Phys.: Condens. Matter, 2008, vol. 20, p. 285 219.

    Google Scholar 

  30. Blöchl, P.E., Phys. Rev. B, 1994, vol. 50, p. 17 953.

    Article  Google Scholar 

  31. Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 1996, vol. 77, p. 3865.

    Article  CAS  Google Scholar 

  32. Kresse, G. and Hafner, J., Phys. Rev. B, 1993, vol. 47, p. 558.

    Article  CAS  Google Scholar 

  33. Kresse, G. and Furthmüller, J., Phys. Rev. B, 1996, vol. 54, p. 11 169.

    Article  Google Scholar 

  34. Kresse, G. and Furthmüller, J., Comput. Mater. Sci., 2004, vol. 6, p. 15.

    Article  Google Scholar 

  35. Khorshidi, A. and Peterson, A.A., Comput. Phys. Commun., 2016, vol. 207, p. 310.

    Article  CAS  Google Scholar 

  36. Bartók, A.P., Kermode, J., Bernstein, N., and Csányi, G., Phys. Rev. X, 2018, vol. 8, p. 041 048.

    Google Scholar 

  37. Behler, J., J. Chem. Phys., 2011, vol. 134, p. 074 106.

    Article  Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research, project no. 18-33-00842 mol_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Korolev.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korolev, V.V., Mitrofanov, A.A., Nevolin, Y.M. et al. Neural Network Based Modeling of Grain Boundary Complexions Localized in Simple Symmetric Tilt Boundaries Σ3 (111) and Σ5 (210). Colloid J 82, 689–695 (2020). https://doi.org/10.1134/S1061933X20050105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X20050105

Navigation