Skip to main content
Log in

Darcy–Brinkman Micropolar Fluid Flow through Corrugated Micro-Tube with Stationary Random Model

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

A boundary perturbation method is presented to investigate the modified micropolar Brinkman model. A slightly micro-corrugated cylindrical tube is filled with a porous medium in which a micropolar fluid flows through its pores. Stationary random model is used to mimic the surface roughness of the tube. The amplitude of the corrugations, which are perpendicular to the flow, is assumed to be small compared to the mean tube radius. The obtained solution is used for the evaluation of the influence of the corrugations on pressure gradient and the flow rate. The corrugation function depending on wavelength, permeability of the porous medium and micropolarity parameter is constructed. The limiting cases of Stokesian and Darcian micropolar fluid flows are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Kariandakis, G.E. and Beskok, A., Microflows: Fundamental and Simulation, Berlin: Springer, 2002.

    Google Scholar 

  2. Ho, C.M. and Tai, Y.C., Annu. Rev. Fluid Mech., 1998, vol. 30, p. 579.

    Article  Google Scholar 

  3. Piéal, A., Bull. Pol. Acad.: Tech., 2004, vol. 52, p. 209.

  4. Eringen, A.C., J. Math. Mech., 1966, vol. 16, p. 1.

    Google Scholar 

  5. Eringen, A.C., Microcontinuum Field Theories: II. Fluent Media, Berlin: Springer, 2001.

    Google Scholar 

  6. Papautsky, I., Brazzle, J., Ameel, T., and Frazier, A.B., Sens. Actuators A, 1999, vol. 73, p. 101.

    Article  CAS  Google Scholar 

  7. Prokhorenko, P.P., Migoun, N.P., and Stadthaus, M., Theoretical Principles of Liquid Penetrant Testing, Berlin: DVS, 1999.

    Google Scholar 

  8. Kamel, M.T. and Hamdan, M.H., Appl. Math. Comput., 1996, vol. 80, p. 33.

    Google Scholar 

  9. Kim, Y.J. and Fedorov, A.G., Int. J. Heat Mass Transfer, 2003, vol. 46, p. 1751.

    Article  Google Scholar 

  10. Khanukaeva, D.Yu. and Filippov, A.N., Colloid J., 2018, vol. 80, p. 14.

    Article  CAS  Google Scholar 

  11. Brinkman, H.C., Appl. Sci. Res., 1947, vol. A1, p. 27.

    CAS  Google Scholar 

  12. Lundgren, T.S., J. Fluid Mech., 1972, vol. 51, p. 273.

    Article  Google Scholar 

  13. Howells, I.D., J. Fluid Mech., 1974, vol. 64, p. 449.

    Article  Google Scholar 

  14. Kamel, M.T., Roach, D., and Hamdan, M.H., Abstracts of Papers, WSEAS Int. Conf. on Mathematical Methods, Computational Techniques and Intelligent Systems, La Laguna, Spain, 2009, p. 190.

  15. Chow, J.C.F. and Soda, K., J. Appl. Mech., 1973, vol. 40, p. 843.

    Article  Google Scholar 

  16. Wang, C.-Y., J. Eng. Mech., 1976, vol. 102, p. 1088.

    Google Scholar 

  17. Wang, C.-Y., J. Appl. Mech., 1979, vol. 46, p. 462.

    Article  Google Scholar 

  18. Phan-Thien, N., Phys. Fluids, 1981, vol. 24, p. 579.

    Article  Google Scholar 

  19. Phan-Thien, N., J. Appl. Math. Mech., 1981, vol. 61, p. 193.

    Google Scholar 

  20. Ng, C.-O. and Wang, C.-Y., Transp. Por. Media, 2010, vol. 85, p. 605.

    Article  Google Scholar 

  21. Faltas, M.S., Saad, E.I., and El-Sapa, S., Transp. Por. Media, 2017, vol. 116, p. 533.

    Article  CAS  Google Scholar 

  22. Faltas, M.S., Sherief, H.H., and Mansour, M.A., J. Por. Media, 2017, vol. 20, p. 723.

    Article  Google Scholar 

  23. Faltas, M.S. and Saad, E.I., Transp. Por. Media, 2017, vol. 118, p. 435.

    Article  CAS  Google Scholar 

  24. Bergles, A., J. Heat Transfer, 1988, vol. 110, p. 4.

    Article  Google Scholar 

  25. Kaviany, M., Principles of Heat Transfer in Porous Media, New York: Springer, 1991.

    Book  Google Scholar 

  26. Nield, D.A. and Bejan, A., Convection in Porous Media,Vol. 3, Springer, 2006.

    Google Scholar 

  27. Khodadadi, J.M., J. Fluids Eng., 1991, vol. 113, p. 509.

    Article  CAS  Google Scholar 

  28. Neira, M.A. and Payatakes, A.C., AIChE J., 1979, vol. 25, p. 725.

    Article  Google Scholar 

  29. Pozrikidis, C., J. Fluid Mech., 1987, vol. 180, p. 495.

    Article  CAS  Google Scholar 

  30. Zhou, H., Khayat, R.E., Martinuzzi, R.J., and Straatman, A.G., Int. J. Numer. Methods Fluids, 2002, vol. 39, p. 1139.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Faltas.

Ethics declarations

The authors declare that they have no conflict of interest-.

APPENDIX

APPENDIX

$${{\gamma }_{1}} = - {{\psi }_{{0,rr}}}(1) = \frac{{2{{\alpha }^{2}}}}{{{{\Delta }_{0}}}}\left( {\alpha _{2}^{2} - \alpha _{1}^{2}} \right){{\alpha }_{3}},$$
( (A.1)
$$\begin{gathered} {{\gamma }_{2}} = - \psi _{{0,rrr}}^{{(2)}}(1) + 2\psi _{{0,rr}}^{{(2)}}(1) - (2 - {{\alpha }^{2}})\psi _{{0,r}}^{{(2)}}(1) \\ - \,\,{{\alpha }^{2}}\psi _{0}^{{\left( 2 \right)}}\left( 1 \right) = \frac{2}{{{{\Delta }_{0}}}}\left( {\alpha _{1}^{2} - {{\alpha }^{2}}} \right) \\ \times \,\,\left( {\alpha _{2}^{2} - {{\alpha }^{2}}} \right)\left( {{{\alpha }_{1}}{{\alpha }_{4}} - {{\alpha }_{2}}{{\alpha }_{5}}} \right), \\ \end{gathered} $$
(A.2)
$$\begin{gathered} {{\gamma }_{3}} = - \left( {\frac{1}{2}{{\psi }_{{0,rrr}}}(1) + {{\phi }_{{1,rr}}}(1)} \right) = \frac{1}{{{{\Delta }_{1}}}}\left[ {\left( {\beta _{2}^{{}}{{\beta }_{5}} - {{\beta }_{1}}{{\beta }_{4}}} \right){{\gamma }_{2}}} \right. \\ \left. { + \,\,\left( {\alpha _{1}^{2} - \alpha _{2}^{2}} \right){{\beta }_{3}}{{\gamma }_{1}}} \right]{{\alpha }^{2}}{{I}_{1}}\left( \lambda \right) - \left( {{{\gamma }_{1}} + {{\gamma }_{2}}} \right) + \frac{1}{{{{\Delta }_{0}}}} \\ \times \,\,\left[ {\alpha _{1}^{3}\left( {\alpha _{2}^{2} - {{\alpha }^{2}}} \right){{\alpha }_{4}} - \alpha _{2}^{3}\left( {\alpha _{1}^{2} - {{\alpha }^{2}}} \right){{\alpha }_{5}}} \right. \\ \left. { - \,\,{{\alpha }^{2}}\left( {\alpha _{1}^{2} - \alpha _{2}^{2}} \right){{\alpha }_{3}}} \right], \\ \end{gathered} $$
(A.3)
$$\begin{gathered} {{\gamma }_{4}} = \frac{1}{2}\left[ { - \psi _{{0,rrrr}}^{{(2)}}(1) + 3\psi _{{0,rrr}}^{{(2)}}(1) - \left( {6 - {{\alpha }^{2}}} \right)\psi _{{0,rr}}^{{(2)}}(1)} \right. \\ \left. { + \,\,2\left( {3 - {{\alpha }^{2}}} \right)\psi _{{0,r}}^{{(2)}}(1) + 2{{\alpha }^{2}}\psi _{0}^{{\left( 2 \right)}}(1)} \right] - \phi _{{1,rrr}}^{{(2)}}(1) \\ + \,\,2\phi _{{1,rr}}^{{(2)}}(1) - \left[ {2 - \left( {{{\lambda }^{2}} + {{\alpha }^{2}}} \right)} \right]\phi _{{1,r}}^{{(2)}}(1) - \left( {{{\lambda }^{2}} + {{\alpha }^{2}}} \right) \\ \times \,\,\phi _{1}^{{\left( 2 \right)}}(1) = - \frac{1}{{{{\Delta }_{0}}}}\left( {\alpha _{1}^{2} - {{\alpha }^{2}}} \right)\left( {\alpha _{2}^{2} - {{\alpha }^{2}}} \right) \\ \times \,\,\left[ {\left( {\alpha _{2}^{2} - \alpha _{1}^{2}} \right){{\alpha }_{3}} + {{\alpha }_{1}}{{\alpha }_{4}} - {{\alpha }_{2}}{{\alpha }_{5}}} \right] \\ + \,\,\frac{{{{\gamma }_{1}}}}{{{{\Delta }_{1}}}}\left( {\alpha _{1}^{2} - {{\alpha }^{2}}} \right)\left( {\alpha _{2}^{2} - {{\alpha }^{2}}} \right){{I}_{1}}(\lambda )\left( {{{\beta }_{2}}{{\beta }_{5}} - {{\beta }_{1}}{{\beta }_{4}}} \right) + \frac{{{{\gamma }_{2}}}}{{{{\Delta }_{1}}}} \\ \times \,\,\left[ {\left( {\alpha _{2}^{2} - {{\alpha }^{2}}} \right)\left( {{{\beta }_{1}}{{I}_{1}}(\lambda )\left( {{{\beta }_{4}} - {{\beta }_{2}}{{\beta }_{6}}} \right) + {{\beta }_{2}}{{\beta }_{5}}\lambda {{I}_{0}}\left( \lambda \right)} \right)} \right. \\ - \,\,\left( {\alpha _{1}^{2} - {{\alpha }^{2}}} \right)\left( {{{\beta }_{2}}{{I}_{1}}\left( \lambda \right)\left( {{{\beta }_{5}} - {{\beta }_{1}}{{\beta }_{6}}} \right) + {{\beta }_{1}}{{\beta }_{4}}\lambda {{I}_{0}}\left( \lambda \right)} \right), \\ \left. { - \,\,\left( {\alpha _{2}^{2} - \alpha _{1}^{2}} \right)\lambda {{I}_{0}}\left( \lambda \right){{\beta }_{3}}} \right],\,\,{{\beta }_{6}} = {{I}_{0}}\left( {{{\beta }_{1}}} \right){{I}_{0}}({{\beta }_{2}}), \\ \end{gathered} $$
(A.4)
$$\begin{gathered} \gamma _{3}^{*} = \frac{1}{{{{\Delta }_{0}}}}\left[ {\alpha _{1}^{3}\left( {\alpha _{2}^{2} - {{\alpha }^{2}}} \right){{\alpha }_{4}} - \alpha _{2}^{3}\left( {\alpha _{1}^{2} - {{\alpha }^{2}}} \right){{\alpha }_{3}}} \right. \\ \left. { - \,\,{{\alpha }^{2}}\left( {\alpha _{1}^{2} - \alpha _{2}^{2}} \right){{\alpha }_{3}}} \right] - \frac{1}{{{{\Delta }_{0}}}}\left[ {\left( {\alpha _{2}^{2} - \alpha _{1}^{2}} \right)\left( {{{\alpha }^{2}}{{\gamma }_{1}} - 2{{\gamma }_{2}}} \right)} \right. \\ \left. { \times \,\,I_{1}^{2}({{\alpha }_{1}}) + {{\alpha }_{1}}{{\alpha }_{2}}{{\gamma }_{2}}\left( {{{\alpha }_{2}}{{\alpha }_{4}} - {{\alpha }_{1}}{{\alpha }_{5}}} \right)} \right], \\ \end{gathered} $$
(A.5)
$$\begin{gathered} \gamma _{4}^{*} = \frac{1}{{{{\Delta }_{0}}}}\left( {\alpha _{2}^{2} - {{\alpha }^{2}}} \right)\left( {\alpha _{1}^{2} - {{\alpha }^{2}}} \right) \\ \times \,\,\left( {{{\alpha }_{1}}{{\alpha }_{4}} - {{\alpha }_{2}}{{\alpha }_{5}} - \left( {\alpha _{2}^{2} - \alpha _{1}^{2}} \right){{\alpha }_{3}}} \right) \\ - \,\,\frac{{{{\gamma }_{1}}}}{{{{\Delta }_{0}}}}\left( {\alpha _{1}^{2} - {{\alpha }^{2}}} \right)\left( {\alpha _{2}^{2} - {{\alpha }^{2}}} \right)\left( {{{\alpha }_{1}}\,{{\alpha }_{4}} - {{\alpha }_{2}}{{\alpha }_{5}}} \right) \\ - \,\,\frac{{{{\gamma }_{2}}}}{{{{\Delta }_{0}}}}\left[ {{{\alpha }_{1}}\left( {{{\alpha }_{2}}\left( {\alpha _{2}^{2} - \alpha _{1}^{2}} \right){{I}_{0}}({{\alpha }_{2}}){{I}_{0}}({{\alpha }_{1}})} \right.} \right. \\ \left. {\left. { + \,\,2\left( {\alpha _{1}^{2} - {{\alpha }^{2}}} \right){{\alpha }_{4}}} \right) - 2{{\alpha }_{2}}\left( {\alpha _{2}^{2} - {{\alpha }^{2}}} \right){{\alpha }_{5}}} \right]. \\ \end{gathered} $$
(A.6)
$$\begin{gathered} \gamma _{3}^{'} = \frac{{\gamma _{1}^{'}}}{{\Delta _{1}^{'}}}\left[ {\lambda \left( {2\beta {\kern 1pt} '\beta _{0}^{'} + \left( {2{{\ell }^{2}} - 3h} \right)\beta _{1}^{'}} \right)\lambda _{1}^{2} + h\lambda \lambda _{0}^{2}\beta _{1}^{'}} \right. \\ \left. { - \,\,2\left( {h + {{\lambda }^{2}}} \right){{\lambda }_{1}}{{\lambda }_{0}}\beta _{1}^{'}} \right] + \frac{{\gamma _{2}^{'}}}{{\Delta _{1}^{'}}}\left[ {\lambda \left( {2\beta {\kern 1pt} '\beta _{0}^{'} - {{\ell }^{2}}\beta _{1}^{'}} \right)\lambda _{1}^{2}} \right. \\ \left. { + \,\,\left( {{{\ell }^{2}}\lambda {{\lambda }_{0}} - 2\beta {\kern 1pt} {{'}^{2}}{{\lambda }_{1}}} \right){{\lambda }_{0}}\beta _{1}^{'}} \right] \\ - \,\,\frac{4}{{\Delta _{0}^{'}}}\left[ {(3h - {{\ell }^{2}}){{I}_{1}}(\ell ) - {{\ell }^{3}}{{I}_{0}}(\ell )} \right], \\ \end{gathered} $$
(A.7)
$$\begin{gathered} \gamma _{4}^{'} = \frac{1}{{\Delta _{1}^{'}}}\gamma _{2}^{'}\left[ \begin{gathered} 2\left[ {\left( {{{\lambda }^{2}} + h} \right)\beta _{1}^{'} + \left( {{{\lambda }^{2}} - h} \right)\beta {\kern 1pt} '\beta _{0}^{'}} \right]{{\lambda }_{1}}{{\lambda }_{0}} \hfill \\ + \lambda \left[ {h\beta _{1}^{'} - \left( {2 + h} \right)\beta {\kern 1pt} '\beta _{0}^{'}} \right]\lambda _{1}^{2} \hfill \\ + \lambda \left[ {\beta {\kern 1pt} 'h\beta _{0}^{'} - \left( {2{{\lambda }^{2}} + h} \right)\beta _{1}^{'}} \right]\lambda _{0}^{2} \hfill \\ \end{gathered} \right] \\ + \,\,\frac{1}{{\Delta _{1}^{'}}}\gamma _{1}^{'}2\lambda h{{I}_{1}}(\lambda )\left[ {\beta {{\lambda }_{1}}\beta _{0}^{'} - \lambda {{\lambda }_{0}}\beta _{1}^{'}} \right] \\ + \,\,\frac{{4h\ell }}{{\Delta _{0}^{'}}}\left[ {\ell {{I}_{1}}(\ell ) - {{I}_{2}}(\ell )} \right], \\ \end{gathered} $$
(A.8)
$$\begin{gathered} \gamma _{1}^{'} = - \frac{8}{{\Delta _{0}^{'}}}\left( {h - {{\ell }^{2}}} \right){{I}_{1}}(\ell ),\,\,\,\gamma _{2}^{'} = \frac{{8\ell h}}{{\Delta _{0}^{'}}}{{I}_{2}}(\ell ), \\ \Delta _{0}^{'} = 4\ell {{I}_{0}}(\ell ) - \left( {8 + h} \right){{I}_{1}}(\ell ), \\ \end{gathered} $$
(A.9)
$$\begin{gathered} \Delta _{1}^{'} = 2\left( {{{\lambda }^{2}} + h} \right){{\lambda }_{1}}{{\lambda }_{0}}\beta _{1}^{'} \\ + \,\,\lambda \left( {h\beta _{1}^{'} - 2\beta {\kern 1pt} '\beta _{0}^{'}} \right)\lambda _{1}^{2} - \lambda h\beta _{1}^{'}\lambda _{0}^{2}, \\ \end{gathered} $$
(A.10)
$$\begin{gathered} \beta {\kern 1pt} ' = \sqrt {{{\lambda }^{2}} + {{\ell }^{2}}} ,\,\,\,{{\lambda }_{1}} = {{I}_{1}}(\lambda ),\,\,\,{{\lambda }_{0}} = {{I}_{0}}(\lambda ), \\ \beta _{0}^{'} = {{I}_{0}}(\beta {\kern 1pt} '),\,\,\,\beta _{1}^{'} = {{I}_{1}}(\beta {\kern 1pt} '). \\ \end{gathered} $$
(A.11)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faltas, M.S., Sherief, H.H. & Ibrahim, M.A. Darcy–Brinkman Micropolar Fluid Flow through Corrugated Micro-Tube with Stationary Random Model. Colloid J 82, 604–616 (2020). https://doi.org/10.1134/S1061933X20050075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X20050075

Navigation