Skip to main content
Log in

A General Approach to Describing Fast Relaxation with Regard to Specific Features of Micellar Models

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

It has been shown that, when passing from the Becker–Döring finite-difference equations to the differential kinetic equation for the function of aggregate distribution over aggregation numbers, the value of the error in the calculation of the times of fast relaxation in a micellar solution is primarily determined by the approximation used for the behavior of the aggregation work in the vicinity of the minimum of the work. The approach developed in this study on the basis of the perturbation theory enables one to take into account the features of a specific micellar model and, in particular, the possible essential asymmetry of the aggregation work in the vicinity of its minimum already in the principal order. The values of some characteristic times of fast relaxation obtained in terms of the proposed approach show a markedly improved accuracy (in the sense of the closeness to “exact” solutions) as compared with recently obtained results at all considered concentrations. This approach is undoubtedly advantageous in the simplicity of its application, universality, and the feasibility to use it for spherical normal and reverse micelles, as well as for cylindrical micelles. Therewith, the complexity of the method is independent of the explicit specification of employed aggregation work and attachment coefficient as functions of aggregation number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Dynamics of Surfactant Self-Assemblies: Micelles, Microemulsions, Vesicles and Lyotropic Phases, Surfactant Sci. Ser., 2005, vol. 125.

    Google Scholar 

  2. Bradburn, D. and Bittinger, T., Micelles: Structural Biochemistry, Formation and Functions & Usage, New York: Nova Science, 2014.

    Google Scholar 

  3. Rusanov, A.I. and Shchekin, A.K., Mitselloobrazovanie v rastvorakh poverkhnostno-aktivnykh veshchestv, 2nd ed. (Micellization in Surfactant Solutions), St. Petersburg: Lan’, 2016.

  4. Shchekin, A.K., Adzhemyan, L.Ts., Babintsev, I.A., and Volkov, N.A., Colloid J., 2018, vol. 80, p. 107.

    Article  CAS  Google Scholar 

  5. Danov, K.D., Kralchevsky, P.A., Stoyanov, S.D., Cook, J.L., Stott, I.P., and Pelan, E.G., Adv. Colloid Interface Sci., 2018, vol. 256, p. 1.

    Article  CAS  Google Scholar 

  6. Self-Assembly: From Surfactants to Nanoparticles, Nagarajan, R., Ed., Hoboken: Wiley, 2019.

  7. Kshevetskiy, M.S. and Shchekin, A.K., Colloid J., 2005, vol. 67, p. 324.

    Article  CAS  Google Scholar 

  8. Danov, K.D., Kralchevsky, P.A., Stoyanov, S.D., Cook, J.L., and Stott, I.P., J. Colloid Interface Sci., 2019, vol. 547, p. 245.

    Article  CAS  Google Scholar 

  9. Danov, K.D., Kralchevsky, P.A., Stoyanov, S.D., Cook, J.L., and Stott, I.P., J. Colloid Interface Sci., 2019, vol. 551, p. 227.

    Article  CAS  Google Scholar 

  10. Shchekin, A.K., Kshevetskiy, M.S., and Pelevina, O.S., Colloid J., 2011, vol. 73, p. 406.

    Article  CAS  Google Scholar 

  11. Zakharov, A.I., Adzhemyan, L.Ts., and Shche-kin, A.K., J. Chem. Phys., 2015, vol. 143, 124902.

    Article  Google Scholar 

  12. Shchekin, A.K., Babintsev, I.A., and Adzhe-myan, L.Ts., J. Chem. Phys., 2016, vol. 145, 174105.

    Article  Google Scholar 

  13. Emelyanova, K., Gotlib, I., Shishkina, A., Voznesenskiy, M., and Victorov, A., J. Chem. Eng. Data, 2016, vol. 61, p. 4013.

    Article  CAS  Google Scholar 

  14. Smith, G.N., Brown, P., James, C., Rogers, S.E., and J. Eastoe, Colloids Surf. A, 2016, vol. 494, p. 194.

    Article  CAS  Google Scholar 

  15. Urano, R., Pantelopulos, G.A., and Straub, J.E., J. Phys. Chem. B, 2019, vol. 123, p. 2546.

    Article  CAS  Google Scholar 

  16. Aniansson, E.A.G., Ber. Bunsen-Ges. Phys. Chem., 1978, vol. 82, p. 981.

    Article  CAS  Google Scholar 

  17. Kshevetskiy, M.S. and Shchekin, A.K., J. Chem. Phys., 2009, vol. 131, 074114.

    Article  CAS  Google Scholar 

  18. Babintsev, I.A., Adzhemyan, L.Ts., and Shche-kin, A.K., J. Chem. Phys., 2012, vol. 137, 044902.

    Article  Google Scholar 

  19. Babintsev, I.A., Adzhemyan, L.T., and Shche-kin, A.K., Soft Matter, 2014, vol. 10, p. 2619.

    Article  CAS  Google Scholar 

  20. Babintsev, I.A., Adzhemyan, L.Ts., and Shche-kin, A.K., J. Chem. Phys., 2014, vol. 141, 064901.

    Article  Google Scholar 

  21. Shchekin, A.K., Babintsev, I.A., Adzhemyan, L.Ts., and Volkov, N.A., RSC Adv., 2014, vol. 4, p. 51722.

    Article  CAS  Google Scholar 

  22. Adzhemyan, L.V., Kim, T.L., and Shchekin, A.K., Colloid J., 2018, vol. 80, p. 243.

    Article  CAS  Google Scholar 

  23. Adzhemyan, L.V., Eroshkin, Yu.A., Kim, T.L., and Shchekin, A.K., Colloid J., 2019, vol. 81, p. 205.

    Article  CAS  Google Scholar 

  24. Adzhemyan, L.Ts., Eroshkin, Yu.A., Shchekin, A.K., and Babintsev, I.A., Phys. A (Amsterdam), 2019, vol. 518, p. 299.

    Article  Google Scholar 

  25. Adzhemyan, L.Ts., Eroshkin, Y.A., Babintsev, I.A., and Shchekin, A.K., J. Mol. Liq., 2019, vol. 284, p. 725.

    Article  CAS  Google Scholar 

  26. Rusanov, A.I., Kuni, F.M., Grinin, A.P., and Shchekin, A.K., Colloid J., 2002, vol. 64, p. 605.

    Article  CAS  Google Scholar 

  27. Rusanov, A.I., Grinin, A.P., Kuni, F.M., and Shchekin, A.K., Russ. J. Gen. Chem., 2002, vol. 72, p. 607.

    Article  CAS  Google Scholar 

  28. Grinin, A.P., Rusanov, A.I., Kuni, F.M., and Shchekin, A.K., Colloid J., 2003, vol. 65, p. 145.

    Article  CAS  Google Scholar 

  29. Halperin, A., Macromolecules, 1987, vol. 20, p. 2943.

    Article  CAS  Google Scholar 

  30. Nyrkova, I.A. and Semenov, A.N., Macromol. Theory Simul., 2005, vol. 14, p. 569.

    Article  CAS  Google Scholar 

  31. Shchekin, A.K., Yakovenko, T.M., and Kuni, F.M., Colloid J., 2002, vol. 64, p. 112.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Prof. A.K. Kazanskii for valuable advises concerning the work.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 20-03-00641_A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Shchekin.

Ethics declarations

The authors declare that they have no conflict of intere-st.

Additional information

Translated by A. Kirilin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eroshkin, Y.A., Adzhemyan, L.T. & Shchekin, A.K. A General Approach to Describing Fast Relaxation with Regard to Specific Features of Micellar Models. Colloid J 82, 513–521 (2020). https://doi.org/10.1134/S1061933X20050051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X20050051

Navigation